Democratizing AI in Africa: FL for Low-Resource Edge Devices
- URL: http://arxiv.org/abs/2408.17216v1
- Date: Fri, 30 Aug 2024 11:46:39 GMT
- Title: Democratizing AI in Africa: FL for Low-Resource Edge Devices
- Authors: Jorge Fabila, Víctor M. Campello, Carlos Martín-Isla, Johnes Obungoloch, Kinyera Leo, Amodoi Ronald, Karim Lekadir,
- Abstract summary: Africa faces significant challenges in healthcare delivery due to limited infrastructure and access to advanced medical technologies.
This study explores the use of federated learning to overcome these barriers, focusing on perinatal health.
We trained a fetal plane classifier using perinatal data from five African countries: Algeria, Ghana, Egypt, Malawi, and Uganda, along with data from Spanish hospitals.
- Score: 0.39012109608386886
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Africa faces significant challenges in healthcare delivery due to limited infrastructure and access to advanced medical technologies. This study explores the use of federated learning to overcome these barriers, focusing on perinatal health. We trained a fetal plane classifier using perinatal data from five African countries: Algeria, Ghana, Egypt, Malawi, and Uganda, along with data from Spanish hospitals. To incorporate the lack of computational resources in the analysis, we considered a heterogeneous set of devices, including a Raspberry Pi and several laptops, for model training. We demonstrate comparative performance between a centralized and a federated model, despite the compute limitations, and a significant improvement in model generalizability when compared to models trained only locally. These results show the potential for a future implementation at a large scale of a federated learning platform to bridge the accessibility gap and improve model generalizability with very little requirements.
Related papers
- Asymmetrical Reciprocity-based Federated Learning for Resolving Disparities in Medical Diagnosis [68.06621490069428]
Geographic health disparities pose a pressing global challenge, particularly in underserved regions of low- and middle-income nations.
We propose a novel cross-silo federated learning framework, named FedHelp, aimed at alleviating geographic health disparities and fortifying the diagnostic capabilities of underserved regions.
arXiv Detail & Related papers (2024-12-27T13:59:58Z) - Adult Glioma Segmentation in Sub-Saharan Africa using Transfer Learning on Stratified Finetuning Data [6.14919256198409]
Gliomas present diagnostic challenges in low- and middle-income countries, particularly in Sub-Saharan Africa.
This paper introduces a novel approach to glioma segmentation using transfer learning to address challenges in resource-limited regions with minimal and low-quality MRI data.
arXiv Detail & Related papers (2024-12-05T12:29:12Z) - Future-Proofing Medical Imaging with Privacy-Preserving Federated Learning and Uncertainty Quantification: A Review [14.88874727211064]
AI could soon become routine in clinical practice for disease diagnosis, prognosis, treatment planning, and post-treatment surveillance.
Privacy concerns surrounding patient data present a major barrier to the widespread adoption of AI in medical imaging.
Federated Learning (FL) offers a solution that enables organizations to train AI models collaboratively without sharing sensitive data.
arXiv Detail & Related papers (2024-09-24T16:55:32Z) - Mind the Gap: Federated Learning Broadens Domain Generalization in
Diagnostic AI Models [2.192472845284658]
Using 610,000 chest radiographs from five institutions, we assessed diagnostic performance as a function of training strategy.
Large datasets showed minimal performance gains with FL but, in some instances, even exhibited decreases.
When trained collaboratively across diverse external institutions, AI models consistently surpassed models trained locally for off-domain tasks.
arXiv Detail & Related papers (2023-10-01T18:27:59Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Generalisability of deep learning models in low-resource imaging
settings: A fetal ultrasound study in 5 African countries [1.7685572617581922]
In Sub-Saharan Africa, the rate of perinatal mortality is very high due to limited access to antenatal screening.
In these countries, AI models could be implemented to help clinicians acquire fetal ultrasound planes for diagnosis of fetal abnormalities.
arXiv Detail & Related papers (2022-09-20T10:56:09Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
We launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution.
Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK.
arXiv Detail & Related papers (2021-11-18T00:43:41Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous data.
We are building MedPerf, an open framework for benchmarking machine learning in the medical domain.
arXiv Detail & Related papers (2021-09-29T18:09:41Z) - A Data and Compute Efficient Design for Limited-Resources Deep Learning [68.55415606184]
equivariant neural networks have gained increased interest in the deep learning community.
They have been successfully applied in the medical domain where symmetries in the data can be effectively exploited to build more accurate and robust models.
Mobile, on-device implementations of deep learning solutions have been developed for medical applications.
However, equivariant models are commonly implemented using large and computationally expensive architectures, not suitable to run on mobile devices.
In this work, we design and test an equivariant version of MobileNetV2 and further optimize it with model quantization to enable more efficient inference.
arXiv Detail & Related papers (2020-04-21T00:49:11Z) - Heterogeneity Loss to Handle Intersubject and Intrasubject Variability
in Cancer [11.440201348567681]
Deep learning (DL) models have shown impressive results in medical domain.
These AI methods can provide immense support to developing nations as affordable healthcare solutions.
This work is focused on one such application of blood cancer diagnosis.
arXiv Detail & Related papers (2020-03-06T16:16:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.