Fair Foundation Models for Medical Image Analysis: Challenges and Perspectives
- URL: http://arxiv.org/abs/2502.16841v1
- Date: Mon, 24 Feb 2025 04:54:49 GMT
- Title: Fair Foundation Models for Medical Image Analysis: Challenges and Perspectives
- Authors: Dilermando Queiroz, Anderson Carlos, André Anjos, Lilian Berton,
- Abstract summary: Foundation Models (FMs), trained on vast datasets through self-supervised learning, enable efficient adaptation across medical imaging tasks.<n>These models demonstrate potential for enhancing fairness, though significant challenges remain in achieving consistent performance across demographic groups.<n>This comprehensive framework advances current knowledge by demonstrating how systematic bias mitigation, combined with policy engagement, can effectively address both technical and institutional barriers to equitable AI in healthcare.
- Score: 2.5573554033525636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring equitable Artificial Intelligence (AI) in healthcare demands systems that make unbiased decisions across all demographic groups, bridging technical innovation with ethical principles. Foundation Models (FMs), trained on vast datasets through self-supervised learning, enable efficient adaptation across medical imaging tasks while reducing dependency on labeled data. These models demonstrate potential for enhancing fairness, though significant challenges remain in achieving consistent performance across demographic groups. Our review indicates that effective bias mitigation in FMs requires systematic interventions throughout all stages of development. While previous approaches focused primarily on model-level bias mitigation, our analysis reveals that fairness in FMs requires integrated interventions throughout the development pipeline, from data documentation to deployment protocols. This comprehensive framework advances current knowledge by demonstrating how systematic bias mitigation, combined with policy engagement, can effectively address both technical and institutional barriers to equitable AI in healthcare. The development of equitable FMs represents a critical step toward democratizing advanced healthcare technologies, particularly for underserved populations and regions with limited medical infrastructure and computational resources.
Related papers
- Balancing Fairness and Performance in Healthcare AI: A Gradient Reconciliation Approach [3.997371369137763]
AI systems deployed without explicit fairness considerations risk exacerbating existing healthcare disparities.
We propose FairGrad, a novel gradient reconciliation framework that balances predictive performance and multi-attribute fairness optimization.
arXiv Detail & Related papers (2025-04-19T19:24:34Z) - Artificial Intelligence-Driven Clinical Decision Support Systems [5.010570270212569]
The chapter emphasizes that creating trustworthy AI systems in healthcare requires careful consideration of fairness, explainability, and privacy.<n>The challenge of ensuring equitable healthcare delivery through AI is stressed, discussing methods to identify and mitigate bias in clinical predictive models.<n>The discussion advances in an analysis of privacy vulnerabilities in medical AI systems, from data leakage in deep learning models to sophisticated attacks against model explanations.
arXiv Detail & Related papers (2025-01-16T16:17:39Z) - AI-Driven Healthcare: A Survey on Ensuring Fairness and Mitigating Bias [2.398440840890111]
AI applications have significantly improved diagnostic accuracy, treatment personalization, and patient outcome predictions.
These advancements also introduce substantial ethical and fairness challenges.
These biases can lead to disparities in healthcare delivery, affecting diagnostic accuracy and treatment outcomes across different demographic groups.
arXiv Detail & Related papers (2024-07-29T02:39:17Z) - A Survey on Medical Large Language Models: Technology, Application, Trustworthiness, and Future Directions [23.36640449085249]
We trace the recent advances of Medical Large Language Models (Med-LLMs)<n>The wide-ranging applications of Med-LLMs are investigated across various healthcare domains.<n>We discuss the challenges associated with ensuring fairness, accountability, privacy, and robustness.
arXiv Detail & Related papers (2024-06-06T03:15:13Z) - Open Challenges and Opportunities in Federated Foundation Models Towards Biomedical Healthcare [14.399086205317358]
Foundation models (FMs) are trained on vast datasets through methods including unsupervised pretraining, self-supervised learning, instructed fine-tuning, and reinforcement learning from human feedback.
These models are crucial for biomedical applications that require processing diverse data forms such as clinical reports, diagnostic images, and multimodal patient interactions.
The incorporation of FL with these sophisticated models presents a promising strategy to harness their analytical power while safeguarding the privacy of sensitive medical data.
arXiv Detail & Related papers (2024-05-10T19:22:24Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the ICU length of stay.
The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction.
The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
arXiv Detail & Related papers (2023-12-31T16:01:48Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous data.
We are building MedPerf, an open framework for benchmarking machine learning in the medical domain.
arXiv Detail & Related papers (2021-09-29T18:09:41Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
We propose an adversarial multi-task training strategy to simultaneously mitigate and detect bias in the deep learning-based medical image analysis system.
Specifically, we propose to add a discrimination module against bias and a critical module that predicts unfairness within the base classification model.
We evaluate our framework on a large-scale public-available skin lesion dataset.
arXiv Detail & Related papers (2021-03-07T03:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.