論文の概要: MoRe Fine-Tuning with 10x Fewer Parameters
- arxiv url: http://arxiv.org/abs/2408.17383v1
- Date: Fri, 30 Aug 2024 16:24:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 14:46:39.862807
- Title: MoRe Fine-Tuning with 10x Fewer Parameters
- Title(参考訳): 10倍のパラメータを持つMoRe微細チューニング
- Authors: Wenxuan Tan, Nicholas Roberts, Tzu-Heng Huang, Jitian Zhao, John Cooper, Samuel Guo, Chengyu Duan, Frederic Sala,
- Abstract要約: Monarch Rectangular Fine-tuning (MoRe)は、Monarch行列クラスに依存するアダプタアーキテクチャを検索するシンプルなフレームワークである。
ローランクアダプタ (LoRA) よりも MoRe の方が表現力が高いことを示す。
提案手法は,従来のPEFTよりもパラメータ効率が高く,LoRAのパラメータの5%に満たない。
- 参考スコア(独自算出の注目度): 11.520349542020819
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parameter-efficient fine-tuning (PEFT) techniques have unlocked the potential to cheaply and easily specialize large pretrained models. However, the most prominent approaches, like low-rank adapters (LoRA), depend on heuristics or rules-of-thumb for their architectural choices -- potentially limiting their performance for new models and architectures. This limitation suggests that techniques from neural architecture search could be used to obtain optimal adapter architectures, but these are often expensive and difficult to implement. We address this challenge with Monarch Rectangular Fine-tuning (MoRe), a simple framework to search over adapter architectures that relies on the Monarch matrix class. Theoretically, we show that MoRe is more expressive than LoRA. Empirically, our approach is more parameter-efficient and performant than state-of-the-art PEFTs on a range of tasks and models, with as few as 5\% of LoRA's parameters.
- Abstract(参考訳): パラメータ効率のよい微調整(PEFT)技術は、大規模な事前訓練モデルに安価で容易に特化できる可能性を解き放った。
しかし、ローランクアダプタ(LoRA)のような最も顕著なアプローチは、アーキテクチャ選択に対するヒューリスティックやルール・オブ・サンプに依存します。
この制限は、ニューラルネットワーク探索のテクニックが最適なアダプタアーキテクチャを得るために使用できることを示唆するが、これらは高価で実装が難しいことが多い。
この課題に対処するMonarch Rectangular Fine-tuning (MoRe)は、Monarch行列クラスに依存するアダプタアーキテクチャを検索するシンプルなフレームワークである。
理論的には、MoReはLoRAよりも表現力が高い。
経験的に、我々の手法は、様々なタスクやモデルにおける最先端のPEFTよりもパラメータ効率が高く、性能も優れており、LoRAのパラメータの5倍にも満たない。
関連論文リスト
- Structured Unrestricted-Rank Matrices for Parameter Efficient Fine-tuning [38.80020737321214]
構造化非制限ランク行列(SURM)に基づく効率的なパラメータ微調整(PEFT)のためのフレームワークを提案する。
SURMは、LoRAの低ランク行列を置換しながら、様々な画像分類タスクにおいて5-7%の精度向上を実現している。
また、GLUEベンチマークでは、アダプタのパラメータ数を最大12倍に削減する(ほぼ品質が低下する)。
論文 参考訳(メタデータ) (2024-06-25T17:26:05Z) - A Provably Effective Method for Pruning Experts in Fine-tuned Sparse Mixture-of-Experts [49.394145046409044]
本論文は,MoEモデルにおけるエキスパートの刈り取りに有効な手法として,初めて提案するものである。
理論的には、事前訓練されたモデルからルータl2ノルムを小さく変更することで、専門家のプルーニングを優先順位付けすることで、テスト精度の維持が保証される。
我々の理論解析は、単純化されたMoEアーキテクチャ上でのバイナリ分類タスクに重点を置いているが、我々の専門的なプルーニング手法は、大きな視覚的MoEモデルに基づいて検証されている。
論文 参考訳(メタデータ) (2024-05-26T17:52:58Z) - ReFT: Representation Finetuning for Language Models [74.51093640257892]
我々はRepresentation Finetuning(ReFT)手法のファミリーを開発する。
ReFTはフリーズベースモデルで動作し、隠れた表現に対するタスク固有の介入を学ぶ。
我々は,8つの常識推論タスク,4つの算術推論タスク,命令チューニング,GLUEについてLoReFTを紹介する。
論文 参考訳(メタデータ) (2024-04-04T17:00:37Z) - MoELoRA: Contrastive Learning Guided Mixture of Experts on
Parameter-Efficient Fine-Tuning for Large Language Models [24.17147521556083]
本稿では,新しいPEFT手法であるMoELoRAを紹介する。
数学推論と常識推論のベンチマークにおいて,11のタスクについて実験を行った。
MoELoRAはLoRAよりも4.2%高い平均性能を達成し、いくつかのベンチマークで175B GPT-3.5と比較して競争性能を示した。
論文 参考訳(メタデータ) (2024-02-20T09:30:48Z) - Higher Layers Need More LoRA Experts [23.72297945365351]
トランスフォーマーモデルのための新しいパラメータ効率MoE法であるtextittextbfMoE-LtextbfoRA と textbfLayer-wise Expert textbfAllocation (MoLA) を導入する。
6つのよく知られたNLPおよびCommonsense QAベンチマークの実験は、MoLAがすべてのベースラインと同等または優れたパフォーマンスを達成することを示した。
論文 参考訳(メタデータ) (2024-02-13T16:04:21Z) - Pushing Mixture of Experts to the Limit: Extremely Parameter Efficient
MoE for Instruction Tuning [7.094820944028638]
我々は,MoEアーキテクチャと軽量専門家を組み合わせることで,極めてパラメータ効率の良いMoEを提案する。
本手法は,従来のタスク知識に依存しないため,目に見えないタスクに一般化する。
本研究は,厳密なパラメータ制約の下でも堅牢な性能を実現する能力を示す。
論文 参考訳(メタデータ) (2023-09-11T13:31:00Z) - Parameter-efficient Tuning of Large-scale Multimodal Foundation Model [68.24510810095802]
我々はこれらの課題を克服するために、クロスモーダル転送(Aurora)のための優雅なプロンプトフレームワークを提案する。
既存のアーキテクチャの冗長性を考慮すると、まずモード近似を用いて0.1Mのトレーニング可能なパラメータを生成し、マルチモーダルプロンプトチューニングを実装する。
6つのクロスモーダルベンチマークの徹底的な評価は、最先端のベンチマークを上回るだけでなく、完全な微調整アプローチよりも優れていることを示している。
論文 参考訳(メタデータ) (2023-05-15T06:40:56Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
行列積演算子(MPO)に基づくより有能なパラメータ共有アーキテクチャを設計する。
MPO分解はパラメータ行列の情報を再編成し、2つの部分に分解することができる。
私たちのアーキテクチャは、モデルのサイズを減らすために、すべてのレイヤで中央テンソルを共有しています。
論文 参考訳(メタデータ) (2023-03-27T02:34:09Z) - Re-parameterizing Your Optimizers rather than Architectures [119.08740698936633]
本稿では,モデル固有の事前知識を構造学に取り入れ,汎用モデル(簡易モデル)の学習に使用する新しいパラダイムを提案する。
実装として,モデル固有のハイパーパラメータの集合に従って勾配を変更することによって,事前知識を付加する手法を提案する。
Reprでトレーニングされた単純なモデルに対しては、VGGスタイルのプレーンモデルに注目し、ReprでトレーニングされたそのようなシンプルなモデルがRep-VGGと呼ばれ、最近のよく設計されたモデルと同等に動作することを示す。
論文 参考訳(メタデータ) (2022-05-30T16:55:59Z) - Top-KAST: Top-K Always Sparse Training [50.05611544535801]
トレーニングを通して一定間隔を保存するTop-KASTを提案する。
確立したImageNetベンチマークのトレーニングモデルでは,従来の作業と同等かそれ以上に動作可能であることを示す。
ImageNetの結果に加えて、言語モデリングの分野においても、我々のアプローチを実証しています。
論文 参考訳(メタデータ) (2021-06-07T11:13:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。