Cognitive Networks and Performance Drive fMRI-Based State Classification Using DNN Models
- URL: http://arxiv.org/abs/2409.00003v1
- Date: Wed, 14 Aug 2024 15:25:51 GMT
- Title: Cognitive Networks and Performance Drive fMRI-Based State Classification Using DNN Models
- Authors: Murat Kucukosmanoglu, Javier O. Garcia, Justin Brooks, Kanika Bansal,
- Abstract summary: We employ two structurally different and complementary DNN-based models to classify individual cognitive states.
We show that despite the architectural differences, both models consistently produce a robust relationship between prediction accuracy and individual cognitive performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural network (DNN) models have demonstrated impressive performance in various domains, yet their application in cognitive neuroscience is limited due to their lack of interpretability. In this study we employ two structurally different and complementary DNN-based models, a one-dimensional convolutional neural network (1D-CNN) and a bidirectional long short-term memory network (BiLSTM), to classify individual cognitive states from fMRI BOLD data, with a focus on understanding the cognitive underpinnings of the classification decisions. We show that despite the architectural differences, both models consistently produce a robust relationship between prediction accuracy and individual cognitive performance, such that low performance leads to poor prediction accuracy. To achieve model explainability, we used permutation techniques to calculate feature importance, allowing us to identify the most critical brain regions influencing model predictions. Across models, we found the dominance of visual networks, suggesting that task-driven state differences are primarily encoded in visual processing. Attention and control networks also showed relatively high importance, however, default mode and temporal-parietal networks demonstrated negligible contribution in differentiating cognitive states. Additionally, we observed individual trait-based effects and subtle model-specific differences, such that 1D-CNN showed slightly better overall performance, while BiLSTM showed better sensitivity for individual behavior; these initial findings require further research and robustness testing to be fully established. Our work underscores the importance of explainable DNN models in uncovering the neural mechanisms underlying cognitive state transitions, providing a foundation for future work in this domain.
Related papers
- Neural Networks Decoded: Targeted and Robust Analysis of Neural Network Decisions via Causal Explanations and Reasoning [9.947555560412397]
We introduce TRACER, a novel method grounded in causal inference theory to estimate the causal dynamics underpinning DNN decisions.
Our approach systematically intervenes on input features to observe how specific changes propagate through the network, affecting internal activations and final outputs.
TRACER further enhances explainability by generating counterfactuals that reveal possible model biases and offer contrastive explanations for misclassifications.
arXiv Detail & Related papers (2024-10-07T20:44:53Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
Graph convolutional networks (GCN) leverage topology-driven graph convolutional operations to combine information across the graph for inference tasks.
We have studied GCNs with covariance matrices as graphs in the form of coVariance neural networks (VNNs)
VNNs inherit the scale-free data processing architecture from GCNs and here, we show that VNNs exhibit transferability of performance over datasets whose covariance matrices converge to a limit object.
arXiv Detail & Related papers (2023-05-02T22:15:54Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Improving Prediction of Cognitive Performance using Deep Neural Networks
in Sparse Data [2.867517731896504]
We used data from an observational, cohort study, Midlife in the United States (MIDUS) to model executive function and episodic memory measures.
Deep neural network (DNN) models consistently ranked highest in all of the cognitive performance prediction tasks.
arXiv Detail & Related papers (2021-12-28T22:23:08Z) - On the benefits of robust models in modulation recognition [53.391095789289736]
Deep Neural Networks (DNNs) using convolutional layers are state-of-the-art in many tasks in communications.
In other domains, like image classification, DNNs have been shown to be vulnerable to adversarial perturbations.
We propose a novel framework to test the robustness of current state-of-the-art models.
arXiv Detail & Related papers (2021-03-27T19:58:06Z) - Object-based attention for spatio-temporal reasoning: Outperforming
neuro-symbolic models with flexible distributed architectures [15.946511512356878]
We show that a fully-learned neural network with the right inductive biases can perform substantially better than all previous neural-symbolic models.
Our model makes critical use of both self-attention and learned "soft" object-centric representations.
arXiv Detail & Related papers (2020-12-15T18:57:40Z) - Spiking Neural Networks -- Part II: Detecting Spatio-Temporal Patterns [38.518936229794214]
Spiking Neural Networks (SNNs) have the unique ability to detect information in encoded-temporal signals.
We review models and training algorithms for the dominant approach that considers SNNs as a Recurrent Neural Network (RNN)
We describe an alternative approach that relies on probabilistic models for spiking neurons, allowing the derivation of local learning rules via gradient estimates.
arXiv Detail & Related papers (2020-10-27T11:47:42Z) - Comparing SNNs and RNNs on Neuromorphic Vision Datasets: Similarities
and Differences [36.82069150045153]
Spiking neural networks (SNNs) and recurrent neural networks (RNNs) are benchmarked on neuromorphic data.
In this work, we make a systematic study to compare SNNs and RNNs on neuromorphic data.
arXiv Detail & Related papers (2020-05-02T10:19:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.