TACOS: Task Agnostic Continual Learning in Spiking Neural Networks
- URL: http://arxiv.org/abs/2409.00021v1
- Date: Fri, 16 Aug 2024 15:42:16 GMT
- Title: TACOS: Task Agnostic Continual Learning in Spiking Neural Networks
- Authors: Nicholas Soures, Peter Helfer, Anurag Daram, Tej Pandit, Dhireesha Kudithipudi,
- Abstract summary: Catastrophic interference, the loss of previously learned information when learning new information, remains a major challenge in machine learning.
We show that neuro-inspired mechanisms such as synaptic consolidation and metaplasticity can mitigate catastrophic interference in a spiking neural network.
Our model, TACOS, combines neuromodulation with complex synaptic dynamics to enable new learning while protecting previous information.
- Score: 1.703671463296347
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Catastrophic interference, the loss of previously learned information when learning new information, remains a major challenge in machine learning. Since living organisms do not seem to suffer from this problem, researchers have taken inspiration from biology to improve memory retention in artificial intelligence systems. However, previous attempts to use bio-inspired mechanisms have typically resulted in systems that rely on task boundary information during training and/or explicit task identification during inference, information that is not available in real-world scenarios. Here, we show that neuro-inspired mechanisms such as synaptic consolidation and metaplasticity can mitigate catastrophic interference in a spiking neural network, using only synapse-local information, with no need for task awareness, and with a fixed memory size that does not need to be increased when training on new tasks. Our model, TACOS, combines neuromodulation with complex synaptic dynamics to enable new learning while protecting previous information. We evaluate TACOS on sequential image recognition tasks and demonstrate its effectiveness in reducing catastrophic interference. Our results show that TACOS outperforms existing regularization techniques in domain-incremental learning scenarios. We also report the results of an ablation study to elucidate the contribution of each neuro-inspired mechanism separately.
Related papers
- Drift to Remember [25.76885050851894]
Lifelong learning in artificial intelligence (AI) aims to mimic the biological brain's ability to continuously learn and retain knowledge.
Recent neuroscience research suggests that neural activity in biological systems undergoes representational drift.
We introduce DriftNet, a network designed to constantly explore various local minima in the loss landscape while dynamically retrieving relevant tasks.
arXiv Detail & Related papers (2024-09-21T03:18:44Z) - Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
We show that loss of plasticity can be decomposed into multiple independent mechanisms.
We show that a combination of layer normalization and weight decay is highly effective at maintaining plasticity in a variety of synthetic nonstationary learning tasks.
arXiv Detail & Related papers (2024-02-29T00:02:33Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
A potential solution to this issue is Neuro-Symbolic Integration (NeSy), where neural approaches are combined with symbolic reasoning.
Most of these methods exploit a neural network to map perceptions to symbols and a logical reasoner to predict the output of the downstream task.
They suffer from several issues, including slow convergence, learning difficulties with complex perception tasks, and convergence to local minima.
This paper proposes a simple yet effective method to ameliorate these problems.
arXiv Detail & Related papers (2024-02-21T15:51:01Z) - A Study of Biologically Plausible Neural Network: The Role and
Interactions of Brain-Inspired Mechanisms in Continual Learning [13.041607703862724]
Humans excel at continually acquiring, consolidating, and retaining information from an ever-changing environment, whereas artificial neural networks (ANNs) exhibit catastrophic forgetting.
We consider a biologically plausible framework that constitutes separate populations of exclusively excitatory and inhibitory neurons that adhere to Dale's principle.
We then conduct a comprehensive study on the role and interactions of different mechanisms inspired by the brain, including sparse non-overlapping representations, Hebbian learning, synaptic consolidation, and replay of past activations that accompanied the learning event.
arXiv Detail & Related papers (2023-04-13T16:34:12Z) - Continual learning benefits from multiple sleep mechanisms: NREM, REM,
and Synaptic Downscaling [51.316408685035526]
Learning new tasks and skills in succession without losing prior learning is a computational challenge for both artificial and biological neural networks.
Here, we investigate how modeling three distinct components of mammalian sleep together affects continual learning in artificial neural networks.
arXiv Detail & Related papers (2022-09-09T13:45:27Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
A lifelong learning agent is able to continually learn from potentially infinite streams of pattern sensory data.
One major historic difficulty in building agents that adapt is that neural systems struggle to retain previously-acquired knowledge when learning from new samples.
This problem is known as catastrophic forgetting (interference) and remains an unsolved problem in the domain of machine learning to this day.
arXiv Detail & Related papers (2021-12-09T07:11:14Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - Learning by Active Forgetting for Neural Networks [36.47528616276579]
Remembering and forgetting mechanisms are two sides of the same coin in a human learning-memory system.
Modern machine learning systems have been working to endow machine with lifelong learning capability through better remembering.
This paper presents a learning model by active forgetting mechanism with artificial neural networks.
arXiv Detail & Related papers (2021-11-21T14:55:03Z) - Artificial Neural Variability for Deep Learning: On Overfitting, Noise
Memorization, and Catastrophic Forgetting [135.0863818867184]
artificial neural variability (ANV) helps artificial neural networks learn some advantages from natural'' neural networks.
ANV plays as an implicit regularizer of the mutual information between the training data and the learned model.
It can effectively relieve overfitting, label noise memorization, and catastrophic forgetting at negligible costs.
arXiv Detail & Related papers (2020-11-12T06:06:33Z) - Synaptic Metaplasticity in Binarized Neural Networks [4.243926243206826]
Deep neural networks are prone to catastrophic forgetting upon training a new task.
We propose and demonstrate experimentally, in situations of multitask and stream learning, a training technique that reduces catastrophic forgetting without needing previously presented data.
This work bridges computational neuroscience and deep learning, and presents significant assets for future embedded and neuromorphic systems.
arXiv Detail & Related papers (2020-03-07T08:09:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.