論文の概要: Detecting Misinformation in Multimedia Content through Cross-Modal Entity Consistency: A Dual Learning Approach
- arxiv url: http://arxiv.org/abs/2409.00022v1
- Date: Fri, 16 Aug 2024 16:14:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-08 15:40:57.143819
- Title: Detecting Misinformation in Multimedia Content through Cross-Modal Entity Consistency: A Dual Learning Approach
- Title(参考訳): クロスモーダルエンティティ一貫性によるマルチメディアコンテンツの誤情報検出:デュアルラーニングアプローチ
- Authors: Zhe Fu, Kanlun Wang, Wangjiaxuan Xin, Lina Zhou, Shi Chen, Yaorong Ge, Daniel Janies, Dongsong Zhang,
- Abstract要約: クロスモーダルなエンティティの整合性を利用して、ビデオコンテンツから誤情報を検出するためのマルチメディア誤情報検出フレームワークを提案する。
以上の結果から,MultiMDは最先端のベースラインモデルより優れていることが示された。
- 参考スコア(独自算出の注目度): 10.376378437321437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The landscape of social media content has evolved significantly, extending from text to multimodal formats. This evolution presents a significant challenge in combating misinformation. Previous research has primarily focused on single modalities or text-image combinations, leaving a gap in detecting multimodal misinformation. While the concept of entity consistency holds promise in detecting multimodal misinformation, simplifying the representation to a scalar value overlooks the inherent complexities of high-dimensional representations across different modalities. To address these limitations, we propose a Multimedia Misinformation Detection (MultiMD) framework for detecting misinformation from video content by leveraging cross-modal entity consistency. The proposed dual learning approach allows for not only enhancing misinformation detection performance but also improving representation learning of entity consistency across different modalities. Our results demonstrate that MultiMD outperforms state-of-the-art baseline models and underscore the importance of each modality in misinformation detection. Our research provides novel methodological and technical insights into multimodal misinformation detection.
- Abstract(参考訳): ソーシャルメディアコンテンツのランドスケープは、テキストからマルチモーダルフォーマットまで、大きく進化してきた。
この進化は誤報に対処する上で大きな課題となる。
これまでの研究では、主に単一のモダリティやテキストイメージの組み合わせに焦点を当てており、マルチモーダルな誤報を検出するためのギャップを残している。
実体整合性の概念はマルチモーダルな誤情報の検出において有望であるが、スカラー値への表現を単純化することは、異なるモダリティにまたがる高次元表現の本質的な複雑さを見落としている。
これらの制約に対処するために,マルチメディア誤情報検出(MultiMD)フレームワークを提案する。
提案手法は,誤情報検出性能の向上だけでなく,異なるモダリティ間でのエンティティ一貫性の表現学習の改善を可能にする。
以上の結果から,MultiMDは最先端のベースラインモデルよりも優れており,誤情報検出における各モダリティの重要性を強調している。
本研究は,マルチモーダル誤報検出に関する新しい方法論的および技術的知見を提供する。
関連論文リスト
- Multimodal Alignment and Fusion: A Survey [7.250878248686215]
マルチモーダル統合により、モデルの精度と適用性が改善される。
我々は既存のアライメントと融合の手法を体系的に分類し分析する。
この調査は、ソーシャルメディア分析、医療画像、感情認識といった分野の応用に焦点を当てている。
論文 参考訳(メタデータ) (2024-11-26T02:10:27Z) - Leveraging Entity Information for Cross-Modality Correlation Learning: The Entity-Guided Multimodal Summarization [49.08348604716746]
Multimodal Summarization with Multimodal Output (MSMO) は、テキストと関連する画像の両方を統合するマルチモーダル要約を作成することを目的としている。
本稿では,Entity-Guided Multimodal Summarization Model (EGMS)を提案する。
我々のモデルは,BART上に構築され,共有重み付きデュアルマルチモーダルエンコーダを用いて,テキスト画像とエンティティ画像情報を並列に処理する。
論文 参考訳(メタデータ) (2024-08-06T12:45:56Z) - Cross-domain Multi-modal Few-shot Object Detection via Rich Text [21.36633828492347]
クロスモーダルな特徴抽出と統合は、数ショットの学習タスクで安定したパフォーマンス改善をもたらした。
MM-OD (CDMM-FSOD) のクロスドメイン数ショット一般化について検討し,メタラーニングに基づく多モード数ショット検出手法を提案する。
論文 参考訳(メタデータ) (2024-03-24T15:10:22Z) - From Text to Pixels: A Context-Aware Semantic Synergy Solution for
Infrared and Visible Image Fusion [66.33467192279514]
我々は、テキスト記述から高レベルなセマンティクスを活用し、赤外線と可視画像のセマンティクスを統合するテキスト誘導多モード画像融合法を提案する。
本手法は,視覚的に優れた融合結果を生成するだけでなく,既存の手法よりも高い検出mAPを達成し,最先端の結果を得る。
論文 参考訳(メタデータ) (2023-12-31T08:13:47Z) - Detecting and Grounding Multi-Modal Media Manipulation and Beyond [93.08116982163804]
マルチモーダルフェイクメディア(DGM4)の新たな研究課題について述べる。
DGM4は、マルチモーダルメディアの真正性を検出するだけでなく、操作されたコンテンツも検出することを目的としている。
本稿では,異なるモーダル間のきめ細かい相互作用を完全に捉えるために,新しい階層型マルチモーダルマニピュレーションrEasoning tRansformer(HAMMER)を提案する。
論文 参考訳(メタデータ) (2023-09-25T15:05:46Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
マルチモーダルエンティティリンクタスクは、マルチモーダル知識グラフへの曖昧な言及を解決することを目的としている。
MELタスクを解決するための新しいMulti-Grained Multimodal InteraCtion Network $textbf(MIMIC)$ frameworkを提案する。
論文 参考訳(メタデータ) (2023-07-19T02:11:19Z) - Inconsistent Matters: A Knowledge-guided Dual-consistency Network for
Multi-modal Rumor Detection [53.48346699224921]
マルチメディアコンテンツによる噂を検出するために,知識誘導型二元整合ネットワークを提案する。
2つの一貫性検出ツールを使用して、クロスモーダルレベルとコンテント知識レベルの不整合を同時にキャプチャする。
また、異なる視覚的モダリティ条件下で頑健なマルチモーダル表現学習を可能にする。
論文 参考訳(メタデータ) (2023-06-03T15:32:20Z) - Detecting and Grounding Multi-Modal Media Manipulation [32.34908534582532]
マルチモーダルフェイクメディア(DGM4)の新たな研究課題について述べる。
DGM4は、マルチモーダルメディアの真正性を検出するだけでなく、操作されたコンテンツも検出することを目的としている。
本稿では,異なるモーダル間のきめ細かい相互作用を完全に捉えるために,新しい階層型マルチモーダルマニピュレーションrEasoning tRansformer(HAMMER)を提案する。
論文 参考訳(メタデータ) (2023-04-05T16:20:40Z) - Multi-modal Fake News Detection on Social Media via Multi-grained
Information Fusion [21.042970740577648]
偽ニュース検出のためのMMFN(Multi-fine Multi-modal Fusion Network)を提案する。
そこで我々は,トランスフォーマーを用いた事前学習モデルを用いて,テキストと画像からトークンレベルの特徴を符号化する。
マルチモーダルモジュールは、CLIPエンコーダでエンコードされた粗い機能を考慮して、きめ細かい機能をフューズする。
論文 参考訳(メタデータ) (2023-04-03T09:13:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。