論文の概要: ADformer: A Multi-Granularity Transformer for EEG-Based Alzheimer's Disease Assessment
- arxiv url: http://arxiv.org/abs/2409.00032v1
- Date: Sat, 17 Aug 2024 14:10:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-08 15:40:57.130102
- Title: ADformer: A Multi-Granularity Transformer for EEG-Based Alzheimer's Disease Assessment
- Title(参考訳): ADformer:脳波に基づくアルツハイマー病評価のための多粒度トランスフォーマー
- Authors: Yihe Wang, Nadia Mammone, Darina Petrovsky, Alexandros T. Tzallas, Francesco C. Morabito, Xiang Zhang,
- Abstract要約: 本稿では、時間的・空間的特徴を捉えて効果的な脳波表現を学習するための新しい多粒度変換器Adformerを提案する。
被験者依存,主観非依存,離脱対象外を含む5つのデータセットを対象に,合計525人の被験者を対象に実験を行った。
以上の結果から,ADformerは既存の手法よりも優れた性能を示した。
- 参考スコア(独自算出の注目度): 42.72554952799386
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electroencephalogram (EEG) has emerged as a cost-effective and efficient method for supporting neurologists in assessing Alzheimer's disease (AD). Existing approaches predominantly utilize handcrafted features or Convolutional Neural Network (CNN)-based methods. However, the potential of the transformer architecture, which has shown promising results in various time series analysis tasks, remains underexplored in interpreting EEG for AD assessment. Furthermore, most studies are evaluated on the subject-dependent setup but often overlook the significance of the subject-independent setup. To address these gaps, we present ADformer, a novel multi-granularity transformer designed to capture temporal and spatial features to learn effective EEG representations. We employ multi-granularity data embedding across both dimensions and utilize self-attention to learn local features within each granularity and global features among different granularities. We conduct experiments across 5 datasets with a total of 525 subjects in setups including subject-dependent, subject-independent, and leave-subjects-out. Our results show that ADformer outperforms existing methods in most evaluations, achieving F1 scores of 75.19% and 93.58% on two large datasets with 65 subjects and 126 subjects, respectively, in distinguishing AD and healthy control (HC) subjects under the challenging subject-independent setup.
- Abstract(参考訳): 脳波(EEG)は、アルツハイマー病(AD)の評価において神経科医を支援するための費用効率が高く効率的な方法として登場した。
既存のアプローチは主に手工芸品や畳み込みニューラルネットワーク(CNN)ベースの手法を利用している。
しかし、様々な時系列分析タスクにおいて有望な結果を示したトランスフォーマーアーキテクチャの可能性は、ADアセスメントのためのEEGの解釈において未解明のままである。
さらに、ほとんどの研究は対象に依存しない設定で評価されるが、しばしば対象に依存しない設定の重要性を見落としている。
これらのギャップに対処するために,時間的・空間的特徴を捉え,効果的な脳波表現を学習するために設計された新しい多粒度トランスフォーマであるADformerを提案する。
両次元に埋め込まれた多粒度データを用いて,各粒度内の局所的特徴と粒度間のグローバルな特徴を学習する。
被験者依存,主観非依存,離脱対象外を含む5つのデータセットを対象に,合計525人の被験者を対象に実験を行った。
その結果,ADformer は既存手法よりも優れており,F1 スコアが75.19%,93.58%,65 名,126 名の2大データセットが93.58%であった。
関連論文リスト
- Deep Learning-based Classification of Dementia using Image Representation of Subcortical Signals [4.17085180769512]
アルツハイマー病 (AD) と前頭側頭型認知症 (FTD) は認知症の一般的な形態であり、それぞれ異なる進行パターンを持つ。
本研究は,脳深部領域の時系列信号を解析し,認知症に対する深い学習に基づく分類システムを開発することを目的とする。
論文 参考訳(メタデータ) (2024-08-20T13:11:43Z) - GFE-Mamba: Mamba-based AD Multi-modal Progression Assessment via Generative Feature Extraction from MCI [5.355943545567233]
アルツハイマー病(英語: Alzheimer's Disease、AD)は、軽度認知障害(MCI)から進行する可逆性神経変性疾患である。
生成特徴抽出(GFE)に基づく分類器GFE-Mambaを紹介する。
評価尺度、MRI、PETのデータを統合し、より深いマルチモーダル融合を可能にする。
GFE-MambaモデルがMCIからADへの変換予測に有効であることを示す。
論文 参考訳(メタデータ) (2024-07-22T15:22:33Z) - Geodesic Optimization for Predictive Shift Adaptation on EEG data [53.58711912565724]
ドメイン適応メソッドは、$X$と$y$で分散シフトが同時に発生したときに苦労する。
本稿では,GOPSA(Geodesic Optimization for Predictive Shift Adaptation)と呼ばれる新しい手法を提案する。
GOPSAは、脳波のバイオメディカル応用のための混合効果モデリングと機械学習を併用する可能性を持っている。
論文 参考訳(メタデータ) (2024-07-04T12:15:42Z) - Topological Feature Search Method for Multichannel EEG: Application in ADHD classification [13.381770446807016]
トポロジカルデータ分析はADHD分類の新しい視点を提供する。
本稿では,ADHDにおけるマルチチャネル脳波に適用可能な拡張型TDA手法を提案する。
その結果、精度、感度、特異性はそれぞれ78.27%、80.62%、75.63%に達した。
論文 参考訳(メタデータ) (2024-04-10T01:37:41Z) - OCT-SelfNet: A Self-Supervised Framework with Multi-Modal Datasets for
Generalized and Robust Retinal Disease Detection [2.3349787245442966]
本研究は、眼疾患を検出するための自己教師付き堅牢な機械学習フレームワークであるOCT-SelfNetに貢献する。
本手法は,自己指導型事前学習と教師型微調整を組み合わせた2段階学習手法を用いてこの問題に対処する。
AUC-PR測定では,提案手法は42%を超え,ベースラインに比べて10%以上の性能向上を示した。
論文 参考訳(メタデータ) (2024-01-22T20:17:14Z) - Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps [1.5501208213584152]
アルツハイマー病(英語: Alzheimer's disease、AD)は、老化に影響を及ぼす神経変性疾患である。
本稿では,自動特徴抽出とランダム森林のための畳み込みニューラルネットワークを利用する,効率的な早期融合(ELF)手法を提案する。
脳の容積の微妙な変化を検出するという課題に対処するために、画像をヤコビ領域(JD)に変換する。
論文 参考訳(メタデータ) (2023-10-25T19:02:57Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。