論文の概要: Phrasing for UX: Enhancing Information Engagement through Computational Linguistics and Creative Analytics
- arxiv url: http://arxiv.org/abs/2409.00064v1
- Date: Fri, 23 Aug 2024 00:33:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-08 15:31:02.375271
- Title: Phrasing for UX: Enhancing Information Engagement through Computational Linguistics and Creative Analytics
- Title(参考訳): UXのためのPhrasing: 計算言語学と創造分析による情報エンゲージメントの強化
- Authors: Nimrod Dvir,
- Abstract要約: 本研究では,デジタルプラットフォーム上でのテキスト特徴と情報エンゲージメント(IE)の関係について検討する。
計算言語学と分析がユーザインタラクションに与える影響を強調します。
READモデルは、代表性、使いやすさ、影響、分散といった重要な予測要素を定量化するために導入された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study explores the relationship between textual features and Information Engagement (IE) on digital platforms. It highlights the impact of computational linguistics and analytics on user interaction. The READ model is introduced to quantify key predictors like representativeness, ease of use, affect, and distribution, which forecast engagement levels. The model's effectiveness is validated through AB testing and randomized trials, showing strong predictive performance in participation (accuracy: 0.94), perception (accuracy: 0.85), perseverance (accuracy: 0.81), and overall IE (accuracy: 0.97). While participation metrics are strong, perception and perseverance show slightly lower recall and F1-scores, indicating some challenges. The study demonstrates that modifying text based on the READ model's insights leads to significant improvements. For example, increasing representativeness and positive affect boosts selection rates by 11 percent, raises evaluation averages from 3.98 to 4.46, and improves retention rates by 11 percent. These findings highlight the importance of linguistic factors in IE, providing a framework for enhancing digital text engagement. The research offers practical strategies applicable to fields like education, health, and media.
- Abstract(参考訳): 本研究では,デジタルプラットフォーム上でのテキスト特徴と情報エンゲージメント(IE)の関係について検討する。
計算言語学と分析がユーザインタラクションに与える影響を強調します。
READモデルは、エンゲージメントレベルを予測する代表性、使いやすさ、影響、分散といった重要な予測要素を定量化するために導入された。
モデルの有効性はABテストとランダム化試験を通じて検証され、参加者の強い予測性能(精度:0.94)、知覚(精度:0.85)、忍耐(精度:0.81)、全体的なIE(精度:0.97)を示す。
参加メトリクスは強いが、知覚と忍耐力は若干低いリコールとF1スコアを示し、いくつかの課題を示している。
この研究は、READモデルの洞察に基づいてテキストを変更することが、大幅な改善をもたらすことを示した。
例えば、代表性の向上と肯定的な影響は、選択率を11%向上させ、評価平均を3.98から4.46に引き上げ、保持率を11%向上させる。
これらの知見は、IEにおける言語的要素の重要性を強調し、デジタルテキストのエンゲージメントを高めるためのフレームワークを提供する。
この研究は、教育、健康、メディアといった分野に適用可能な実践的な戦略を提供する。
関連論文リスト
- The Cognitive Capabilities of Generative AI: A Comparative Analysis with Human Benchmarks [17.5336703613751]
本研究は、ウェクスラー成人インテリジェンス尺度(WAIS-IV)における大規模言語モデルと視覚言語モデルと人間のパフォーマンスに対するベンチマークである。
ほとんどのモデルは、文字や数字の任意のシーケンスのようなトークンの保存、検索、操作において例外的な機能を示した。
これらの長所にもかかわらず、我々はマルチモーダルモデルから知覚推論指標(PRI)の性能が一貫して劣っていることを観察した。
論文 参考訳(メタデータ) (2024-10-09T19:22:26Z) - Optimizing Transformer based on high-performance optimizer for predicting employment sentiment in American social media content [9.49688045612671]
本稿では,Swarmインテリジェンス最適化アルゴリズムに基づくTransformerモデルの改良を行い,雇用関係のテキストコンテンツの感情を予測することを目的とする。
トレーニング期間中、モデルの精度は49.27%から82.83%に徐々に上昇し、損失値は0.67から0.35に低下した。
本稿では、ソーシャルメディア上での雇用関連テキストにおける感情認識の精度の向上だけでなく、重要な実践的意義も挙げる。
論文 参考訳(メタデータ) (2024-10-09T03:14:05Z) - Evaluating Large Language Models Using Contrast Sets: An Experimental Approach [0.0]
本研究では,スタンフォード自然言語推論データセットのコントラストセットを生成する革新的な手法を提案する。
我々の戦略は、動詞、副詞、形容詞をその同義語と自動置換して、文の本来の意味を保存することである。
本手法は,モデルの性能が真の言語理解に基づくのか,それとも単にパターン認識に基づくのかを評価することを目的とする。
論文 参考訳(メタデータ) (2024-04-02T02:03:28Z) - Dissecting vocabulary biases datasets through statistical testing and
automated data augmentation for artifact mitigation in Natural Language
Inference [3.154631846975021]
我々は、データセットのアーティファクトを調査し、これらの問題に対処するための戦略を開発することに重点を置いている。
文字レベルから単語レベルにまたがる複数の自動データ拡張戦略を提案する。
実験により,提案手法はモデル精度を効果的に向上し,バイアスを最大0.66%,バイアスを1.14%低減することを示した。
論文 参考訳(メタデータ) (2023-12-14T08:46:26Z) - Sensitivity, Performance, Robustness: Deconstructing the Effect of
Sociodemographic Prompting [64.80538055623842]
社会デマトグラフィープロンプトは、特定の社会デマトグラフィープロファイルを持つ人間が与える答えに向けて、プロンプトベースのモデルの出力を操縦する技術である。
ソシオデマトグラフィー情報はモデル予測に影響を及ぼし、主観的NLPタスクにおけるゼロショット学習を改善するのに有用であることを示す。
論文 参考訳(メタデータ) (2023-09-13T15:42:06Z) - A Predictive Model of Digital Information Engagement: Forecasting User
Engagement With English Words by Incorporating Cognitive Biases,
Computational Linguistics and Natural Language Processing [3.09766013093045]
本研究は,デジタル情報エンゲージメント(IE)の新しい予測モデルの導入と実証実験である。
READモデルは、重要な認知バイアスを計算言語学や自然言語処理と統合し、情報のエンゲージメントに関する多次元的視点を開発する。
READモデルの可能性は、ビジネス、教育、政府、医療など、さまざまな領域に及んでいる。
論文 参考訳(メタデータ) (2023-07-26T20:58:47Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Retrieval-based Disentangled Representation Learning with Natural
Language Supervision [61.75109410513864]
本稿では,VDR(Vocabulary Disentangled Retrieval)を提案する。
提案手法では,両エンコーダモデルを用いて語彙空間におけるデータと自然言語の両方を表現する。
論文 参考訳(メタデータ) (2022-12-15T10:20:42Z) - A Multi-Level Attention Model for Evidence-Based Fact Checking [58.95413968110558]
シーケンス構造をトレーニング可能な,シンプルなモデルを提案する。
Fact extract and VERification のための大規模データセットの結果、我々のモデルはグラフベースのアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-02T05:40:12Z) - Counterfactual Representation Learning with Balancing Weights [74.67296491574318]
観察データによる因果推論の鍵は、それぞれの治療タイプに関連する予測的特徴のバランスを達成することである。
近年の文献では、この目標を達成するために表現学習を探求している。
因果効果を柔軟かつスケーラブルかつ正確に推定するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-10-23T19:06:03Z) - Explaining Black Box Predictions and Unveiling Data Artifacts through
Influence Functions [55.660255727031725]
影響関数は、影響力のあるトレーニング例を特定することによって、モデルの判断を説明する。
本稿では,代表課題における影響関数と共通単語順応法の比較を行う。
我々は,学習データ中の成果物を明らかにすることができる影響関数に基づく新しい尺度を開発した。
論文 参考訳(メタデータ) (2020-05-14T00:45:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。