Non-instructional Fine-tuning: Enabling Instruction-Following Capabilities in Pre-trained Language Models without Instruction-Following Data
- URL: http://arxiv.org/abs/2409.00096v1
- Date: Tue, 27 Aug 2024 01:21:53 GMT
- Title: Non-instructional Fine-tuning: Enabling Instruction-Following Capabilities in Pre-trained Language Models without Instruction-Following Data
- Authors: Juncheng Xie, Shensian Syu, Hung-yi Lee,
- Abstract summary: We propose a novel approach that uses the first half of a random text from OpenWebText as the instruction and GPT-3.5-turbo or GPT-4-turbo to complete the text as the response.
Despite the data being "non-instructional", we found that pre-trained LLMs fine-tuned on this data can gain instruction-following capabilities.
- Score: 51.34222224728979
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instruction fine-tuning is crucial for today's large language models (LLMs) to learn to follow instructions and align with human preferences. Conventionally, supervised data, including the instruction and the correct response, is required for instruction fine-tuning. To obtain such data, some researchers prompted well-trained models like GPT-4 to generate instructions and correct responses. In this paper, we propose a novel approach that uses the first half of a random text from OpenWebText as the instruction and GPT-3.5-turbo or GPT-4-turbo to complete the text as the response. Despite the data being "non-instructional", we found that pre-trained LLMs fine-tuned on this data can gain instruction-following capabilities. This observation is verified by fine-tuning several well-known pre-trained LLMs (e.g., LLaMA-2-7B, LLaMA-3-8B, LLaMA-3-70B, Mistral-7B-v0.1). The "non-instructional data" also improved some models that underwent supervised fine-tuning and human preference alignment. Our LLaMA-3-70B-Instruct fine-tuned through "non-instructional data" is comparable with LLaMA-3.1-70B-Instruct on the Arena Hard leaderboard. We analyzed the "non-instructional data" and ensured it is devoid of content related to instruction fine-tuning. Our findings will inspire further investigation into how to develop instruction-following capabilities without explicit instruction-related data.
Related papers
- Balancing Continuous Pre-Training and Instruction Fine-Tuning: Optimizing Instruction-Following in LLMs [4.096028601599825]
Large Language Models (LLMs) for public use require continuous pre-training to remain up-to-date with the latest data.
This study aims to find the most compute-efficient strategy to gain up-to-date knowledge and instruction-following capabilities without requiring any instruction data and fine-tuning.
arXiv Detail & Related papers (2024-10-14T17:20:30Z) - REInstruct: Building Instruction Data from Unlabeled Corpus [49.82314244648043]
We propose REInstruct, a method to automatically build instruction data from an unlabeled corpus.
By training Llama-7b on a combination of 3k seed data and 32k synthetic data from REInstruct, fine-tuned model achieves a 65.41% win rate on AlpacaEval leaderboard against text-davinci-003.
arXiv Detail & Related papers (2024-08-20T09:05:03Z) - Phased Instruction Fine-Tuning for Large Language Models [12.037895935630882]
Phased Instruction Fine-Tuning (Phased IFT) is proposed, based on the idea that learning to follow instructions is a gradual process.
It assesses instruction difficulty using GPT-4, divides the instruction data into subsets of increasing difficulty, and uptrains the model sequentially on these subsets.
Experiments with Llama-2 7B/13B/70B, Llama3 8/70B and Mistral-7B models using Alpaca data show that Phased IFT significantly outperforms One-off IFT.
arXiv Detail & Related papers (2024-06-01T04:25:26Z) - From Language Modeling to Instruction Following: Understanding the Behavior Shift in LLMs after Instruction Tuning [63.63840740526497]
We investigate how instruction tuning adjusts pre-trained models with a focus on intrinsic changes.
The impact of instruction tuning is then studied by comparing the explanations derived from the pre-trained and instruction-tuned models.
Our findings reveal three significant impacts of instruction tuning.
arXiv Detail & Related papers (2023-09-30T21:16:05Z) - Dynosaur: A Dynamic Growth Paradigm for Instruction-Tuning Data Curation [92.2167864437497]
We propose Dynosaur, a dynamic growth paradigm for the automatic curation of instruction-tuning data.
Based on the metadata of existing datasets, we use LLMs to automatically construct instruction-tuning data by identifying relevant data fields and generating appropriate instructions.
By leveraging the existing annotated datasets, Dynosaur offers several advantages: 1) it reduces the API cost for generating instructions; 2) it provides high-quality data for instruction tuning; and 3) it supports the continuous improvement of models by generating instruction-tuning data when a new annotated dataset becomes available.
arXiv Detail & Related papers (2023-05-23T17:56:26Z) - Instruction Tuning with GPT-4 [107.55078894215798]
We present the first attempt to use GPT-4 to generate instruction-following data for finetuning large language models.
Our early experiments on instruction-tuned LLaMA models show that the 52K English and Chinese instruction-following data generated by GPT-4 leads to superior zero-shot performance on new tasks.
arXiv Detail & Related papers (2023-04-06T17:58:09Z) - Self-Instruct: Aligning Language Models with Self-Generated Instructions [76.42871502364697]
Self-Instruct is a framework for improving the instruction-following capabilities of pretrained language models.
Our pipeline generates instructions, input, and output samples from a language model, then filters invalid or similar ones before using them to finetune the original model.
For further evaluation, we curate a set of expert-written instructions for novel tasks, and show through human evaluation that tuning GPT3 with Self-Instruct outperforms using existing public instruction datasets by a large margin.
arXiv Detail & Related papers (2022-12-20T18:59:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.