Balancing Continuous Pre-Training and Instruction Fine-Tuning: Optimizing Instruction-Following in LLMs
- URL: http://arxiv.org/abs/2410.10739v1
- Date: Mon, 14 Oct 2024 17:20:30 GMT
- Title: Balancing Continuous Pre-Training and Instruction Fine-Tuning: Optimizing Instruction-Following in LLMs
- Authors: Ishan Jindal, Chandana Badrinath, Pranjal Bharti, Lakkidi Vinay, Sachin Dev Sharma,
- Abstract summary: Large Language Models (LLMs) for public use require continuous pre-training to remain up-to-date with the latest data.
This study aims to find the most compute-efficient strategy to gain up-to-date knowledge and instruction-following capabilities without requiring any instruction data and fine-tuning.
- Score: 4.096028601599825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) for public use require continuous pre-training to remain up-to-date with the latest data. The models also need to be fine-tuned with specific instructions to maintain their ability to follow instructions accurately. Typically, LLMs are released in two versions: the Base LLM, pre-trained on diverse data, and the instruction-refined LLM, additionally trained with specific instructions for better instruction following. The question arises as to which model should undergo continuous pre-training to maintain its instruction-following abilities while also staying current with the latest data. In this study, we delve into the intricate relationship between continuous pre-training and instruction fine-tuning of the LLMs and investigate the impact of continuous pre-training on the instruction following abilities of both the base and its instruction finetuned model. Further, the instruction fine-tuning process is computationally intense and requires a substantial number of hand-annotated examples for the model to learn effectively. This study aims to find the most compute-efficient strategy to gain up-to-date knowledge and instruction-following capabilities without requiring any instruction data and fine-tuning. We empirically prove our findings on the LLaMa 3, 3.1 and Qwen 2, 2.5 family of base and instruction models, providing a comprehensive exploration of our hypotheses across varying sizes of pre-training data corpus and different LLMs settings.
Related papers
- Preference Curriculum: LLMs Should Always Be Pretrained on Their Preferred Data [19.221998577357713]
Large language models (LLMs) generally utilize a consistent data distribution throughout the pretraining process.
As the model's capability improves, it is intuitive that its data preferences dynamically change, indicating the need for pretraining with different data at various training stages.
We propose the Perplexity Difference (PD) based Preference Curriculum learning framework, which always perceives and uses the data preferred by LLMs to train and boost them.
arXiv Detail & Related papers (2025-01-21T13:12:13Z) - Aligning Instruction Tuning with Pre-training [81.4748965653345]
We propose Aligning Instruction Tuning with Pre-training (AITP) to align instruction tuning with pre-training distributions.
We show consistent performance improvements with AITP on three fully open large language models (LLMs) across eight benchmarks.
arXiv Detail & Related papers (2025-01-16T08:27:40Z) - The Inherent Limits of Pretrained LLMs: The Unexpected Convergence of Instruction Tuning and In-Context Learning Capabilities [51.594836904623534]
We investigate whether instruction-tuned models possess fundamentally different capabilities from base models that are prompted using in-context examples.
We show that the performance of instruction-tuned models is significantly correlated with the in-context performance of their base counterparts.
Specifically, we extend this understanding to instruction-tuned models, suggesting that their pretraining data similarly sets a limiting boundary on the tasks they can solve.
arXiv Detail & Related papers (2025-01-15T10:57:55Z) - Rethinking Data Synthesis: A Teacher Model Training Recipe with Interpretation [12.736045604858738]
Recent advances in large language model (LLM) training have highlighted the need for diverse, high-quality instruction data.
We propose a paradigm shift named textbfNOMAD by investigating how to specifically train models for data generation.
arXiv Detail & Related papers (2024-10-27T07:38:39Z) - The Construction of Instruction-tuned LLMs for Finance without Instruction Data Using Continual Pretraining and Model Merging [1.4491649618823355]
This paper proposes a novel method for constructing instruction-tuned large language models (LLMs) for finance without instruction data.
Our method combines domain-specific continual pretraining with model merging.
One major advantage of our method is that the instruction-tuned and domain-specific pretrained vectors are nearly independent.
arXiv Detail & Related papers (2024-09-30T01:23:28Z) - Instruction Pre-Training: Language Models are Supervised Multitask Learners [115.95022434390181]
In this paper, we propose a framework that augments massive raw corpora with instruction-response pairs to pre-train language models (LMs)
In our experiments, we synthesize 200M instruction-response pairs covering 40+ task categories to verify the effectiveness of Instruction Pre-Training.
arXiv Detail & Related papers (2024-06-20T16:55:33Z) - Enhancing and Assessing Instruction-Following with Fine-Grained Instruction Variants [28.691691883519542]
We introduce a technique that decomposes complex instructions into simpler sub-components, modifies these, and reconstructs them into new variants.
Based on DeMoRecon, we developed the FGIV dataset which contains fine-grained instruction variants of 1,773 seed instructions.
Our findings show that LLMs fine-tuned with FGIV will gain significant performance boost on both ours and commonly used instructions-following benchmarks.
arXiv Detail & Related papers (2024-06-17T08:08:11Z) - CoIN: A Benchmark of Continual Instruction tuNing for Multimodel Large Language Model [121.23360004498893]
We present a benchmark, namely Continual Instruction tuNing (CoIN), to assess existing MLLMs in the sequential instruction tuning paradigm.
Experiments on CoIN demonstrate that current powerful MLLMs still suffer catastrophic forgetting.
We introduce MoELoRA to MLLMs which is effective to retain the previous instruction alignment.
arXiv Detail & Related papers (2024-03-13T08:54:31Z) - Alpaca against Vicuna: Using LLMs to Uncover Memorization of LLMs [61.04246774006429]
We introduce a black-box prompt optimization method that uses an attacker LLM agent to uncover higher levels of memorization in a victim agent.
We observe that our instruction-based prompts generate outputs with 23.7% higher overlap with training data compared to the baseline prefix-suffix measurements.
Our findings show that instruction-tuned models can expose pre-training data as much as their base-models, if not more so, and using instructions proposed by other LLMs can open a new avenue of automated attacks.
arXiv Detail & Related papers (2024-03-05T19:32:01Z) - From Language Modeling to Instruction Following: Understanding the Behavior Shift in LLMs after Instruction Tuning [63.63840740526497]
We investigate how instruction tuning adjusts pre-trained models with a focus on intrinsic changes.
The impact of instruction tuning is then studied by comparing the explanations derived from the pre-trained and instruction-tuned models.
Our findings reveal three significant impacts of instruction tuning.
arXiv Detail & Related papers (2023-09-30T21:16:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.