論文の概要: Large Language Models for Disease Diagnosis: A Scoping Review
- arxiv url: http://arxiv.org/abs/2409.00097v1
- Date: Tue, 27 Aug 2024 02:06:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-08 15:11:32.913466
- Title: Large Language Models for Disease Diagnosis: A Scoping Review
- Title(参考訳): 疾患診断のための大規模言語モデル:スコーピング・レビュー
- Authors: Shuang Zhou, Zidu Xu, Mian Zhang, Chunpu Xu, Yawen Guo, Zaifu Zhan, Sirui Ding, Jiashuo Wang, Kaishuai Xu, Yi Fang, Liqiao Xia, Jeremy Yeung, Daochen Zha, Mingquan Lin, Rui Zhang,
- Abstract要約: 大規模言語モデル(LLM)の出現は、人工知能のパラダイムシフトを引き起こした。
この分野に注目が集まっているにもかかわらず、多くの重要な研究課題が未解決のままである。
本研究は, 疾患の種類, 関連臓器システム, 関連臨床データ, LLM技術, 既存の研究で報告されている評価方法について検討した。
- 参考スコア(独自算出の注目度): 29.498658795329977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic disease diagnosis has become increasingly valuable in clinical practice. The advent of large language models (LLMs) has catalyzed a paradigm shift in artificial intelligence, with growing evidence supporting the efficacy of LLMs in diagnostic tasks. Despite the growing attention in this field, many critical research questions remain under-explored. For instance, what diseases and LLM techniques have been investigated for diagnostic tasks? How can suitable LLM techniques and evaluation methods be selected for clinical decision-making? To answer these questions, we performed a comprehensive analysis of LLM-based methods for disease diagnosis. This scoping review examined the types of diseases, associated organ systems, relevant clinical data, LLM techniques, and evaluation methods reported in existing studies. Furthermore, we offered guidelines for data preprocessing and the selection of appropriate LLM techniques and evaluation strategies for diagnostic tasks. We also assessed the limitations of current research and delineated the challenges and future directions in this research field. In summary, our review outlined a blueprint for LLM-based disease diagnosis, helping to streamline and guide future research endeavors.
- Abstract(参考訳): 自動疾患診断は、臨床実践においてますます価値が増している。
大規模言語モデル(LLM)の出現は、人工知能のパラダイムシフトを触媒し、診断タスクにおけるLLMの有効性を裏付ける証拠が増えている。
この分野に注目が集まっているにもかかわらず、多くの重要な研究課題が未解決のままである。
例えば、診断タスクにおいて、どの病気やLLM技術が研究されているか?
臨床診断に適切なLCM技術と評価方法の選択は可能か?
これらの疑問に答えるために, LLM を用いた疾患診断法を総合的に分析した。
本研究は, 疾患の種類, 関連臓器システム, 関連臨床データ, LLM技術, 既存の研究で報告されている評価方法について検討した。
さらに,データ前処理のガイドラインや,適切なLCM手法の選択,診断タスクの評価戦略も提案した。
また、現在の研究の限界を評価し、この研究分野における課題と今後の方向性を詳述した。
総説では,LSMによる疾患診断の青写真について概説し,今後の研究成果の合理化と指導に役立てた。
関連論文リスト
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
大規模言語モデル(LLM)は、医療のさまざまな側面に革命をもたらすことのできる、変革的なAIツールのクラスである。
本チュートリアルは、LSMを臨床実践に効果的に統合するために必要なツールを医療専門家に提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-24T15:41:56Z) - CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBenchは、14のエキスパートによるコア臨床シナリオを備えた総合的なベンチマークである。
このベンチマークの信頼性はいくつかの点で確認されている。
論文 参考訳(メタデータ) (2024-10-04T15:15:36Z) - Insight: A Multi-Modal Diagnostic Pipeline using LLMs for Ocular Surface Disease Diagnosis [17.970320199904084]
眼表面疾患の診断に大規模言語モデル(LLM)を用いた,革新的なマルチモーダル診断パイプライン(MDPipe)を導入する。
これらの課題に対処するために,眼表面疾患の診断に大規模言語モデル(LLM)を用いることで,革新的なマルチモーダル診断パイプライン(MDPipe)を導入する。
論文 参考訳(メタデータ) (2024-10-01T00:23:05Z) - Diagnostic Reasoning in Natural Language: Computational Model and Application [68.47402386668846]
言語基底タスク(NL-DAR)の文脈における診断誘導推論(DAR)について検討する。
パール構造因果モデルに基づくNL-DARの新しいモデリングフレームワークを提案する。
得られたデータセットを用いて,NL-DARにおける人間の意思決定過程を解析する。
論文 参考訳(メタデータ) (2024-09-09T06:55:37Z) - Assessing and Enhancing Large Language Models in Rare Disease Question-answering [64.32570472692187]
本稿では,レアな疾患の診断におけるLarge Language Models (LLMs) の性能を評価するために,レアな疾患問合せデータセット(ReDis-QA)を導入する。
ReDis-QAデータセットでは1360の高品質な質問応答ペアを収集し,205の稀な疾患をカバーした。
その後、いくつかのオープンソースのLCMをベンチマークし、希少疾患の診断がこれらのモデルにとって重要な課題であることを示した。
実験の結果,ReCOPは,ReDis-QAデータセット上でのLCMの精度を平均8%向上できることがわかった。
論文 参考訳(メタデータ) (2024-08-15T21:09:09Z) - CliBench: A Multifaceted and Multigranular Evaluation of Large Language Models for Clinical Decision Making [16.310913127940857]
我々はMIMIC IVデータセットから開発された新しいベンチマークであるCliBenchを紹介する。
このベンチマークは、臨床診断におけるLSMの能力を包括的かつ現実的に評価する。
臨床診断の熟練度を評価するため,先進LSMのゼロショット評価を行った。
論文 参考訳(メタデータ) (2024-06-14T11:10:17Z) - Evaluating large language models in medical applications: a survey [1.5923327069574245]
大規模言語モデル(LLM)は、多くのドメインにまたがる変換可能性を持つ強力なツールとして登場した。
医学的文脈におけるLCMのパフォーマンスを評価することは、医療情報の複雑で批判的な性質から、ユニークな課題を提示する。
論文 参考訳(メタデータ) (2024-05-13T05:08:33Z) - Large Language Models are Clinical Reasoners: Reasoning-Aware Diagnosis Framework with Prompt-Generated Rationales [15.362903610463285]
本稿では,素早い学習を通して診断過程を合理化する「推論認識」診断フレームワークを提案する。
そこで本研究では,実世界の臨床環境に対する機械生成的合理化の可能性を評価するための新しい基準セットを提案する。
論文 参考訳(メタデータ) (2023-12-12T16:14:45Z) - The Significance of Machine Learning in Clinical Disease Diagnosis: A
Review [0.0]
本研究では、時系列医療指標における心拍データの伝達を改善するための機械学習アルゴリズムの能力について検討する。
検討中の要因は、アルゴリズムの利用、対象とする疾患の種類、採用されるデータの種類、応用、評価指標などである。
論文 参考訳(メタデータ) (2023-10-25T20:28:22Z) - Exploring the Cognitive Knowledge Structure of Large Language Models: An
Educational Diagnostic Assessment Approach [50.125704610228254]
大規模言語モデル(LLM)は、様々なタスクにまたがる例外的なパフォーマンスを示すだけでなく、知性の火花も示している。
近年の研究では、人間の試験における能力の評価に焦点が当てられ、異なる領域における彼らの印象的な能力を明らかにしている。
ブルーム分類に基づく人体検査データセットであるMoocRadarを用いて評価を行った。
論文 参考訳(メタデータ) (2023-10-12T09:55:45Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。