論文の概要: Evaluating the Impact of Multiple DER Aggregators on Wholesale Energy Markets: A Hybrid Mean Field Approach
- arxiv url: http://arxiv.org/abs/2409.00107v1
- Date: Tue, 27 Aug 2024 14:56:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-08 15:11:32.896683
- Title: Evaluating the Impact of Multiple DER Aggregators on Wholesale Energy Markets: A Hybrid Mean Field Approach
- Title(参考訳): 多元アグリゲータが全エネルギー市場に与える影響評価:ハイブリッド平均場アプローチ
- Authors: Jun He, Andrew L. Liu,
- Abstract要約: 地域エネルギー市場への分散エネルギー資源の統合は、グリッドの柔軟性を大幅に向上させ、市場効率を向上し、より持続可能なエネルギーの未来に貢献することができる。
我々は、複数のDERアグリゲータを特徴とする市場モデルについて検討し、それぞれがDERリソースのポートフォリオを制御し、DER資産所有者に代わって市場への入札を行う。
本稿では,MFGフレームワーク内で各エージェントが最適な戦略を学習し,市場状況や不確実性に適応する能力を向上させるための強化学習(RL)手法を提案する。
- 参考スコア(独自算出の注目度): 2.0535683313855055
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The integration of distributed energy resources (DERs) into wholesale energy markets can greatly enhance grid flexibility, improve market efficiency, and contribute to a more sustainable energy future. As DERs -- such as solar PV panels and energy storage -- proliferate, effective mechanisms are needed to ensure that small prosumers can participate meaningfully in these markets. We study a wholesale market model featuring multiple DER aggregators, each controlling a portfolio of DER resources and bidding into the market on behalf of the DER asset owners. The key of our approach lies in recognizing the repeated nature of market interactions the ability of participants to learn and adapt over time. Specifically, Aggregators repeatedly interact with each other and with other suppliers in the wholesale market, collectively shaping wholesale electricity prices (aka the locational marginal prices (LMPs)). We model this multi-agent interaction using a mean-field game (MFG), which uses market information -- reflecting the average behavior of market participants -- to enable each aggregator to predict long-term LMP trends and make informed decisions. For each aggregator, because they control the DERs within their portfolio under certain contract structures, we employ a mean-field control (MFC) approach (as opposed to a MFG) to learn an optimal policy that maximizes the total rewards of the DERs under their management. We also propose a reinforcement learning (RL)-based method to help each agent learn optimal strategies within the MFG framework, enhancing their ability to adapt to market conditions and uncertainties. Numerical simulations show that LMPs quickly reach a steady state in the hybrid mean-field approach. Furthermore, our results demonstrate that the combination of energy storage and mean-field learning significantly reduces price volatility compared to scenarios without storage.
- Abstract(参考訳): 分散エネルギー資源 (DER) の地域エネルギー市場への統合は、グリッドの柔軟性を大幅に向上させ、市場効率を向上し、より持続可能なエネルギーの未来に貢献することができる。
太陽のPVパネルやエネルギー貯蔵など、DERが増殖するにつれて、小さなプロシューマーがこれらの市場で有意義に参加できるように、効果的なメカニズムが必要である。
我々は、複数のDERアグリゲータを特徴とする市場モデルについて検討し、それぞれがDERリソースのポートフォリオを制御し、DER資産所有者に代わって市場への入札を行う。
このアプローチの鍵は、市場相互作用の繰り返しの性質を認識し、参加者が時間とともに学び、適応する能力を認識することです。
具体的には、アグリゲーターは、問屋市場の他のサプライヤーと繰り返し交流し、問屋の電力価格(LMP)をまとめて形成する。
このマルチエージェントインタラクションを平均フィールドゲーム(MFG)を用いてモデル化し,市場参加者の平均行動を反映した市場情報を用いて,長期LMPトレンドの予測と情報決定を可能にする。
各アグリゲータは、特定の契約構造の下でポートフォリオ内のDERを管理するため、(MFGとは対照的に)平均フィールド制御(MFC)アプローチを用いて、その管理下にあるDERの総報酬を最大化する最適なポリシーを学ぶ。
また、MFGフレームワーク内で各エージェントが最適な戦略を学習し、市場状況や不確実性に適応する能力を高めるための強化学習(RL)ベースの手法を提案する。
数値シミュレーションにより、LMPはハイブリッド平均場アプローチにおいて急速に定常状態に達することが示された。
さらに,エネルギストレージと平均場学習の組み合わせは,ストレージのないシナリオと比較して価格変動を著しく低減することを示した。
関連論文リスト
- Temporal-Aware Deep Reinforcement Learning for Energy Storage Bidding in
Energy and Contingency Reserve Markets [13.03742132147551]
我々は、深層強化学習(DRL)を利用した新しいBESS共同入札戦略を開発し、そのスポットと同時周波数制御アシラリーサービス市場を入札する。
従来の「ブラックボックス」DRLモデルとは異なり、我々のアプローチはより解釈可能であり、BESSの時間入札行動に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-02-29T12:41:54Z) - Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management [1.2016264781280588]
ポートフォリオ全体のリターンと潜在的なリスクの間のトレードオフのバランスをとるために,マルチエージェント強化学習(RL)アプローチを提案する。
得られた実験結果から,提案したMASAフレームワークの有効性が明らかとなった。
論文 参考訳(メタデータ) (2024-02-01T11:31:26Z) - Approximating Energy Market Clearing and Bidding With Model-Based
Reinforcement Learning [0.0]
マルチエージェント強化学習(MARL)は,シミュレーションにおけるエネルギー市場参加者の利益最大化行動を予測するための,有望な新しいアプローチである。
我々は、学習したOPF近似と明示的な市場ルールの形で、エネルギー市場を基本的MARLアルゴリズムにモデル化する。
実験の結果,トレーニング時間は約1桁削減されるが,性能は若干低下することがわかった。
論文 参考訳(メタデータ) (2023-03-03T08:26:22Z) - Finding Regularized Competitive Equilibria of Heterogeneous Agent
Macroeconomic Models with Reinforcement Learning [151.03738099494765]
労働市場に参入する世帯や企業を無限に数える異種エージェントマクロ経済モデルについて検討する。
本稿では,モデルの正規化競争均衡を求めるデータ駆動強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-24T17:16:27Z) - Proximal Policy Optimization Based Reinforcement Learning for Joint
Bidding in Energy and Frequency Regulation Markets [6.175137568373435]
エネルギー仲裁はバッテリエネルギー貯蔵システム(BESS)にとって重要な収入源となる。
BESSは、不確実な市場条件下での総利益を最大化するために、各市場にどの程度の能力を割り当てるかを慎重に決定することが不可欠である。
本稿では,BESSの入札問題をマルコフ決定プロセスとして定式化し,BESSがスポット市場とFCAS市場の両方に参加して利益を最大化できるようにする。
論文 参考訳(メタデータ) (2022-12-13T13:07:31Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
本稿では、自律制御と再生可能エネルギー資源のスマート電力グリッドシステムへの統合のための多エージェント深層強化学習(DRL)フレームワークを提案する。
特に,提案フレームワークは,住宅利用者に対する需要応答 (DR) と分散エネルギー管理 (DEM) を共同で検討している。
論文 参考訳(メタデータ) (2022-11-29T01:18:58Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
本稿では,エージェント・ベースの観点から,これらのマーケット・メーカーの戦略に関する研究に焦点をあてる。
模擬株式市場における知的市場マーカー作成のための強化学習(Reinforcement Learning, RL)の適用を提案する。
論文 参考訳(メタデータ) (2021-12-08T14:55:21Z) - Achieving Diverse Objectives with AI-driven Prices in Deep Reinforcement
Learning Multi-agent Markets [35.02265584959417]
深層学習政策立案者を通じて市場価格と割当を計算するための実践的アプローチを提案する。
政策立案者はより柔軟で、多様な目的について価格を調整できます。
この結果のハイライトとして,我々の政策立案者は,資源の持続可能性を維持することに大きく成功している。
論文 参考訳(メタデータ) (2021-06-10T21:26:17Z) - Exploring market power using deep reinforcement learning for intelligent
bidding strategies [69.3939291118954]
キャパシティが1年の平均的な電力価格に影響を及ぼすことがわかりました。
$sim$25%と$sim$11%の値は、市場構造と国によって異なる可能性がある。
平均市場価格の約2倍の市場上限の使用は、この効果を著しく減少させ、競争力のある市場を維持する効果があることを観察する。
論文 参考訳(メタデータ) (2020-11-08T21:07:42Z) - A Multi-Agent Deep Reinforcement Learning Approach for a Distributed
Energy Marketplace in Smart Grids [58.666456917115056]
本稿では,マイクログリッドを支配下に置くために,強化学習に基づくエネルギー市場を提案する。
提案する市場モデルにより,リアルタイムかつ需要に依存した動的価格設定環境が実現され,グリッドコストが低減され,消費者の経済的利益が向上する。
論文 参考訳(メタデータ) (2020-09-23T02:17:51Z) - A Deep Reinforcement Learning Framework for Continuous Intraday Market
Bidding [69.37299910149981]
再生可能エネルギー源統合の成功の鍵となる要素は、エネルギー貯蔵の利用である。
欧州の継続的な日内市場におけるエネルギー貯蔵の戦略的関与をモデル化するための新しい枠組みを提案する。
本アルゴリズムの分散バージョンは, サンプル効率のため, この問題を解決するために選択される。
その結果, エージェントは, ベンチマーク戦略よりも平均的収益率の高い政策に収束することが示唆された。
論文 参考訳(メタデータ) (2020-04-13T13:50:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。