FedMCP: Parameter-Efficient Federated Learning with Model-Contrastive Personalization
- URL: http://arxiv.org/abs/2409.00116v1
- Date: Wed, 28 Aug 2024 04:19:47 GMT
- Title: FedMCP: Parameter-Efficient Federated Learning with Model-Contrastive Personalization
- Authors: Qianyi Zhao, Chen Qu, Cen Chen, Mingyuan Fan, Yanhao Wang,
- Abstract summary: FedMCP is a novel parameter-efficient fine-tuning method with model-contrastive personalization for FL.
We show that FedMCP achieves substantial performance improvements over state-of-the-art FL fine-tuning approaches for PLMs.
- Score: 19.328216705039527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With increasing concerns and regulations on data privacy, fine-tuning pretrained language models (PLMs) in federated learning (FL) has become a common paradigm for NLP tasks. Despite being extensively studied, the existing methods for this problem still face two primary challenges. First, the huge number of parameters in large-scale PLMs leads to excessive communication and computational overhead. Second, the heterogeneity of data and tasks across clients poses a significant obstacle to achieving the desired fine-tuning performance. To address the above problems, we propose FedMCP, a novel parameter-efficient fine-tuning method with model-contrastive personalization for FL. Specifically, FedMCP adds two lightweight adapter modules, i.e., the global adapter and the private adapter, to the frozen PLMs within clients. In a communication round, each client sends only the global adapter to the server for federated aggregation. Furthermore, FedMCP introduces a model-contrastive regularization term between the two adapters. This, on the one hand, encourages the global adapter to assimilate universal knowledge and, on the other hand, the private adapter to capture client-specific knowledge. By leveraging both adapters, FedMCP can effectively provide fine-tuned personalized models tailored to individual clients. Extensive experiments on highly heterogeneous cross-task, cross-silo datasets show that FedMCP achieves substantial performance improvements over state-of-the-art FL fine-tuning approaches for PLMs.
Related papers
- FedSpaLLM: Federated Pruning of Large Language Models [8.45879077052023]
Large Language Models (LLMs) achieve state-of-the-art performance but are challenging to deploy due to their high computational and storage demands.
We propose FedSpaLLM, the first federated learning framework designed specifically for pruning LLMs.
arXiv Detail & Related papers (2024-10-18T20:33:12Z) - Communication-Efficient and Tensorized Federated Fine-Tuning of Large Language Models [24.07770417615704]
We introduce FedTT and FedTT+, methods for adapting Large Language Models.
FedTT is versatile and can be applied to both cross-silo FL and large-scale cross-device FL.
Our proposed methods successfully address data heterogeneity challenges and perform on par or even better than existing federated PEFT approaches.
arXiv Detail & Related papers (2024-10-16T23:50:39Z) - FedMoE: Personalized Federated Learning via Heterogeneous Mixture of Experts [4.412721048192925]
We present FedMoE, the efficient personalized Federated Learning framework to address data heterogeneity.
FedMoE is composed of two fine-tuning stages. In the first stage, FedMoE simplifies the problem by conducting a search based on observed activation patterns.
In the second stage, these submodels are distributed to clients for further training and returned for server aggregating.
arXiv Detail & Related papers (2024-08-21T03:16:12Z) - Personalized Wireless Federated Learning for Large Language Models [75.22457544349668]
Large Language Models (LLMs) have revolutionized natural language processing tasks.
Their deployment in wireless networks still face challenges, i.e., a lack of privacy and security protection mechanisms.
We introduce two personalized wireless federated fine-tuning methods with low communication overhead.
arXiv Detail & Related papers (2024-04-20T02:30:21Z) - Communication-Efficient Personalized Federated Learning for
Speech-to-Text Tasks [66.78640306687227]
To protect privacy and meet legal regulations, federated learning (FL) has gained significant attention for training speech-to-text (S2T) systems.
The commonly used FL approach (i.e., textscFedAvg) in S2T tasks typically suffers from extensive communication overhead.
We propose a personalized federated S2T framework that introduces textscFedLoRA, a lightweight LoRA module for client-side tuning and interaction with the server, and textscFedMem, a global model equipped with a $k$-near
arXiv Detail & Related papers (2024-01-18T15:39:38Z) - FedBPT: Efficient Federated Black-box Prompt Tuning for Large Language
Models [22.29061931122386]
Pre-trained language models (PLM) have revolutionized the NLP landscape, achieving stellar performances across diverse tasks.
This paper introduces Federated Black-box Prompt Tuning (FedBPT), a framework designed to address these challenges.
arXiv Detail & Related papers (2023-10-02T16:43:14Z) - FedJETs: Efficient Just-In-Time Personalization with Federated Mixture
of Experts [48.78037006856208]
FedJETs is a novel solution by using a Mixture-of-Experts (MoE) framework within a Federated Learning (FL) setup.
Our method leverages the diversity of the clients to train specialized experts on different subsets of classes, and a gating function to route the input to the most relevant expert(s)
Our approach can improve accuracy up to 18% in state of the art FL settings, while maintaining competitive zero-shot performance.
arXiv Detail & Related papers (2023-06-14T15:47:52Z) - FedDWA: Personalized Federated Learning with Dynamic Weight Adjustment [20.72576355616359]
We propose a new PFL algorithm called emphFedDWA (Federated Learning with Dynamic Weight Adjustment) to address the problem.
FedDWA computes personalized aggregation weights based on collected models from clients.
We conduct extensive experiments using five real datasets and the results demonstrate that FedDWA can significantly reduce the communication traffic and achieve much higher model accuracy than the state-of-the-art approaches.
arXiv Detail & Related papers (2023-05-10T13:12:07Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - PerAda: Parameter-Efficient Federated Learning Personalization with Generalization Guarantees [95.87604231887353]
Existing pFL methods introduce high communication and computation costs or are vulnerable to test communication.
In PerAda, a parameter distillation and pFL pFL has superior performance, especially under test-time distribution.
Our code is available at https://github.com/NV/PerAda.
arXiv Detail & Related papers (2023-02-13T19:00:37Z) - FedFM: Anchor-based Feature Matching for Data Heterogeneity in Federated
Learning [91.74206675452888]
We propose a novel method FedFM, which guides each client's features to match shared category-wise anchors.
To achieve higher efficiency and flexibility, we propose a FedFM variant, called FedFM-Lite, where clients communicate with server with fewer synchronization times and communication bandwidth costs.
arXiv Detail & Related papers (2022-10-14T08:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.