Look Back for More: Harnessing Historical Sequential Updates for Personalized Federated Adapter Tuning
- URL: http://arxiv.org/abs/2501.01653v1
- Date: Fri, 03 Jan 2025 06:10:09 GMT
- Title: Look Back for More: Harnessing Historical Sequential Updates for Personalized Federated Adapter Tuning
- Authors: Danni Peng, Yuan Wang, Huazhu Fu, Jinpeng Jiang, Yong Liu, Rick Siow Mong Goh, Qingsong Wei,
- Abstract summary: Existing personalized federated learning (PFL) approaches rely solely on the clients' latest updated models.
We propose pFedSeq, designed for personalizing adapters to fine-tune a foundation model in FL.
In pFedSeq, the server maintains and trains a sequential learner, which processes a sequence of past adapter updates from clients.
To effectively capture the cross-client and cross-step relations hidden in previous updates, pFedSeq adopts the powerful selective state space model.
- Score: 50.45027483522507
- License:
- Abstract: Personalized federated learning (PFL) studies effective model personalization to address the data heterogeneity issue among clients in traditional federated learning (FL). Existing PFL approaches mainly generate personalized models by relying solely on the clients' latest updated models while ignoring their previous updates, which may result in suboptimal personalized model learning. To bridge this gap, we propose a novel framework termed pFedSeq, designed for personalizing adapters to fine-tune a foundation model in FL. In pFedSeq, the server maintains and trains a sequential learner, which processes a sequence of past adapter updates from clients and generates calibrations for personalized adapters. To effectively capture the cross-client and cross-step relations hidden in previous updates and generate high-performing personalized adapters, pFedSeq adopts the powerful selective state space model (SSM) as the architecture of sequential learner. Through extensive experiments on four public benchmark datasets, we demonstrate the superiority of pFedSeq over state-of-the-art PFL methods.
Related papers
- Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.
We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - Client-supervised Federated Learning: Towards One-model-for-all Personalization [28.574858341430858]
We propose a novel federated learning framework to learn only one robust global model to achieve competitive performance to those personalized models on unseen/test clients in the FL system.
Specifically, we design a new Client-Supervised Federated Learning (FedCS) to unravel clients' bias on instances' latent representations so that the global model can learn both client-specific and client-agnostic knowledge.
arXiv Detail & Related papers (2024-03-28T15:29:19Z) - Efficient Model Personalization in Federated Learning via
Client-Specific Prompt Generation [38.42808389088285]
Federated learning (FL) emerges as a decentralized learning framework which trains models from multiple distributed clients without sharing their data to preserve privacy.
We propose a novel personalized FL framework of client-specific Prompt Generation (pFedPG)
pFedPG learns to deploy a personalized prompt generator at the server for producing client-specific visual prompts that efficiently adapts frozen backbones to local data distributions.
arXiv Detail & Related papers (2023-08-29T15:03:05Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Federated Learning of Shareable Bases for Personalization-Friendly Image
Classification [54.72892987840267]
FedBasis learns a set of few shareable basis'' models, which can be linearly combined to form personalized models for clients.
Specifically for a new client, only a small set of combination coefficients, not the model weights, needs to be learned.
To demonstrate the effectiveness and applicability of FedBasis, we also present a more practical PFL testbed for image classification.
arXiv Detail & Related papers (2023-04-16T20:19:18Z) - Visual Prompt Based Personalized Federated Learning [83.04104655903846]
We propose a novel PFL framework for image classification tasks, dubbed pFedPT, that leverages personalized visual prompts to implicitly represent local data distribution information of clients.
Experiments on the CIFAR10 and CIFAR100 datasets show that pFedPT outperforms several state-of-the-art (SOTA) PFL algorithms by a large margin in various settings.
arXiv Detail & Related papers (2023-03-15T15:02:15Z) - Parameterized Knowledge Transfer for Personalized Federated Learning [11.223753730705374]
We propose a novel training framework to employ personalized models for different clients.
It is demonstrated that the proposed framework is the first federated learning paradigm that realizes personalized model training.
arXiv Detail & Related papers (2021-11-04T13:41:45Z) - PFA: Privacy-preserving Federated Adaptation for Effective Model
Personalization [6.66389628571674]
Federated learning (FL) has become a prevalent distributed machine learning paradigm with improved privacy.
This paper introduces a new concept called federated adaptation, targeting at adapting the trained model in a federated manner to achieve better personalization results.
We propose PFA, a framework to accomplish Privacy-preserving Federated Adaptation.
arXiv Detail & Related papers (2021-03-02T08:07:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.