MAPF-GPT: Imitation Learning for Multi-Agent Pathfinding at Scale
- URL: http://arxiv.org/abs/2409.00134v4
- Date: Tue, 11 Feb 2025 12:28:36 GMT
- Title: MAPF-GPT: Imitation Learning for Multi-Agent Pathfinding at Scale
- Authors: Anton Andreychuk, Konstantin Yakovlev, Aleksandr Panov, Alexey Skrynnik,
- Abstract summary: Multi-agent pathfinding (MAPF) is a problem that generally requires finding collision-free paths for multiple agents in a shared environment.
Recently, learning-based approaches to MAPF have gained attention, particularly those leveraging deep reinforcement learning.
We show that MAPF-GPT notably outperforms the current best-performing learnable MAPF solvers on a diverse range of problem instances.
- Score: 46.35418789518417
- License:
- Abstract: Multi-agent pathfinding (MAPF) is a problem that generally requires finding collision-free paths for multiple agents in a shared environment. Solving MAPF optimally, even under restrictive assumptions, is NP-hard, yet efficient solutions for this problem are critical for numerous applications, such as automated warehouses and transportation systems. Recently, learning-based approaches to MAPF have gained attention, particularly those leveraging deep reinforcement learning. Typically, such learning-based MAPF solvers are augmented with additional components like single-agent planning or communication. Orthogonally, in this work we rely solely on imitation learning that leverages a large dataset of expert MAPF solutions and transformer-based neural network to create a foundation model for MAPF called MAPF-GPT. The latter is capable of generating actions without additional heuristics or communication. MAPF-GPT demonstrates zero-shot learning abilities when solving the MAPF problems that are not present in the training dataset. We show that MAPF-GPT notably outperforms the current best-performing learnable MAPF solvers on a diverse range of problem instances and is computationally efficient during inference.
Related papers
- Transient Multi-Agent Path Finding for Lifelong Navigation in Dense Environments [9.000023855628958]
The Lifelong MAPF (LMAPF) problem is a well-studied online version of MAPF in which an agent receives a new target when it reaches its current target.
We propose to solve LMAPF problems by solving a sequence of modified MAPF problems, in which the objective is for each agent to eventually visit its target.
We refer to this MAPF variant as Transient MAPF (TMAPF) and propose several algorithms for solving it based on existing MAPF algorithms.
arXiv Detail & Related papers (2024-12-05T15:37:29Z) - Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously and collision-free through a shared area toward given goal locations.
Finding an optimal solution is often computationally infeasible, making the use of approximate, suboptimal algorithms essential.
We introduce the problem of scalable mechanism design for MAPF and propose three strategyproof mechanisms, two of which even use approximate MAPF algorithms.
arXiv Detail & Related papers (2024-01-30T14:26:04Z) - Decentralized Monte Carlo Tree Search for Partially Observable
Multi-agent Pathfinding [49.730902939565986]
Multi-Agent Pathfinding problem involves finding a set of conflict-free paths for a group of agents confined to a graph.
In this study, we focus on the decentralized MAPF setting, where the agents may observe the other agents only locally.
We propose a decentralized multi-agent Monte Carlo Tree Search (MCTS) method for MAPF tasks.
arXiv Detail & Related papers (2023-12-26T06:57:22Z) - Traffic Flow Optimisation for Lifelong Multi-Agent Path Finding [29.76466191644455]
Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics that asks us to compute collision-free paths for a team of agents.
We propose a new approach for MAPF where agents are guided to their destination by following congestion-avoiding paths.
We evaluate the idea in two large-scale settings: one-shot MAPF, where each agent has a single destination, and lifelong MAPF, where agents are continuously assigned new destinations.
arXiv Detail & Related papers (2023-08-22T07:17:39Z) - Conflict-Based Search for Explainable Multi-Agent Path Finding [7.734726150561088]
In safety-critical applications, a human supervisor may want to verify that the plan is indeed collision-free.
MAPF problem asks for a set of non-colliding paths that admits a short-enough explanation.
Traditional MAPF algorithms are not equipped to directly handle explainable-MAPF.
We adapt Conflict Based Search (CBS), a well-studied algorithm for MAPF, to handle explainable MAPF.
arXiv Detail & Related papers (2022-02-20T23:13:14Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
Model-agnostic meta-learning (MAML) has become a popular research area.
Existing MAML algorithms rely on the episode' idea by sampling a few tasks and data points to update the meta-model at each iteration.
This paper proposes memory-based algorithms for MAML that converge with vanishing error.
arXiv Detail & Related papers (2021-06-09T08:47:58Z) - MALib: A Parallel Framework for Population-based Multi-agent
Reinforcement Learning [61.28547338576706]
Population-based multi-agent reinforcement learning (PB-MARL) refers to the series of methods nested with reinforcement learning (RL) algorithms.
We present MALib, a scalable and efficient computing framework for PB-MARL.
arXiv Detail & Related papers (2021-06-05T03:27:08Z) - Compilation-based Solvers for Multi-Agent Path Finding: a Survey,
Discussion, and Future Opportunities [7.766921168069532]
We show the lessons learned from past developments and current trends in the topic and discuss its wider impact.
Two major approaches to optimal MAPF solving include (1) dedicated search-based methods, which solve MAPF directly, and (2) compilation-based methods that reduce a MAPF instance to an instance in a different well established formalism.
arXiv Detail & Related papers (2021-04-23T20:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.