論文の概要: Speaker Tagging Correction With Non-Autoregressive Language Models
- arxiv url: http://arxiv.org/abs/2409.00151v1
- Date: Fri, 30 Aug 2024 11:02:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 16:50:17.401922
- Title: Speaker Tagging Correction With Non-Autoregressive Language Models
- Title(参考訳): 非自己回帰型言語モデルを用いた話者タグ補正
- Authors: Grigor Kirakosyan, Davit Karamyan,
- Abstract要約: 非自己回帰言語モデルに基づく話者タグ付け補正システムを提案する。
提案手法は, 単語ダイアリゼーション誤り率 (WDER) を2つのデータセットで減少させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speech applications dealing with conversations require not only recognizing the spoken words but also determining who spoke when. The task of assigning words to speakers is typically addressed by merging the outputs of two separate systems, namely, an automatic speech recognition (ASR) system and a speaker diarization (SD) system. In practical settings, speaker diarization systems can experience significant degradation in performance due to a variety of factors, including uniform segmentation with a high temporal resolution, inaccurate word timestamps, incorrect clustering and estimation of speaker numbers, as well as background noise. Therefore, it is important to automatically detect errors and make corrections if possible. We used a second-pass speaker tagging correction system based on a non-autoregressive language model to correct mistakes in words placed at the borders of sentences spoken by different speakers. We first show that the employed error correction approach leads to reductions in word diarization error rate (WDER) on two datasets: TAL and test set of Fisher. Additionally, we evaluated our system in the Post-ASR Speaker Tagging Correction challenge and observed significant improvements in cpWER compared to baseline methods.
- Abstract(参考訳): 会話を扱う音声アプリケーションは、話し言葉を認識するだけでなく、誰がいつ話すかを判断する必要がある。
話者に単語を割り当てるタスクは通常、2つの異なるシステム、すなわち自動音声認識(ASR)システムと話者ダイアリゼーション(SD)システムの出力を統合することで対処される。
実用的な設定では、話者ダイアリゼーションシステムは、時間分解能の高い一様セグメンテーション、不正確な単語タイムスタンプ、誤クラスタリング、話者数の推定、背景雑音など、様々な要因により、性能の著しい劣化を経験することができる。
したがって、エラーを自動的に検出し、可能な限り修正することが重要である。
我々は,非自己回帰言語モデルに基づく第2パス話者タグ付け補正システムを用いて,異なる話者によって話される文の境界に置かれる単語の誤りを訂正した。
まず, 単語ダイアリゼーション誤り率 (WDER) を TAL と test set of Fisher の2つのデータセットで削減する手法を提案する。
さらに, 話者タグ付け補正課題において, ベースライン法と比較して, cpWERの大幅な改善が見られた。
関連論文リスト
- Error Correction by Paying Attention to Both Acoustic and Confidence References for Automatic Speech Recognition [52.624909026294105]
本稿では,非自己回帰型音声誤り訂正法を提案する。
信頼モジュールは、N-best ASR仮説の各単語の不確実性を測定する。
提案方式は,ASRモデルと比較して誤差率を21%削減する。
論文 参考訳(メタデータ) (2024-06-29T17:56:28Z) - Towards Unsupervised Speech Recognition Without Pronunciation Models [57.222729245842054]
ほとんどの言語では、音声認識システムを効果的に訓練するのに十分なペア音声とテキストデータがない。
本稿では、教師なしASRシステムを開発するために、音素レキシコンへの依存を除去することを提案する。
音声合成とテキスト・テキスト・マスクによるトークン埋込から教師なし音声認識が実現可能であることを実験的に実証した。
論文 参考訳(メタデータ) (2024-06-12T16:30:58Z) - Online speaker diarization of meetings guided by speech separation [0.0]
重複した音声は、話者ダイアリゼーションシステムに問題があることで知られている。
長時間録音のオンライン話者ダイアリゼーションに適した音声分離誘導ダイアリゼーション方式を提案する。
論文 参考訳(メタデータ) (2024-01-30T09:09:22Z) - Lexical Speaker Error Correction: Leveraging Language Models for Speaker
Diarization Error Correction [4.409889336732851]
話者ダイアリゼーション (SD) は通常、認識された単語に話者ラベルを登録するために自動音声認識 (ASR) システムで使用される。
このアプローチは、特に話者回転と話者重複領域に関する話者誤差を引き起こす可能性がある。
語彙情報を用いた第2パス話者誤り訂正システムを提案する。
論文 参考訳(メタデータ) (2023-06-15T17:47:41Z) - In search of strong embedding extractors for speaker diarisation [49.7017388682077]
話者ダイアリゼーションにEEを採用する際の2つの重要な問題に対処する。
まず、性能向上に必要な特徴が話者検証とダイアリゼーションに異なるため、評価は簡単ではない。
広く採用されている話者検証評価プロトコルの性能向上は、ダイアリゼーション性能の向上に繋がらないことを示す。
重なり合う音声や話者変化の入力を認識するために,2番目の問題を緩和する2つのデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2022-10-26T13:00:29Z) - CorrectSpeech: A Fully Automated System for Speech Correction and Accent
Reduction [37.52612296258531]
提案方式はCorrectSpeechと呼ばれ、3段階の修正を行う。
補正音声の品質と自然性は、音声認識とアライメントモジュールの性能に依存する。
その結果,音声の発音誤りを訂正し,アクセントを低減できることがわかった。
論文 参考訳(メタデータ) (2022-04-12T01:20:29Z) - Speaker Embedding-aware Neural Diarization: a Novel Framework for
Overlapped Speech Diarization in the Meeting Scenario [51.5031673695118]
重なり合う音声のダイアリゼーションを単一ラベル予測問題として再構成する。
話者埋め込み認識型ニューラルダイアリゼーション(SEND)システムを提案する。
論文 参考訳(メタデータ) (2022-03-18T06:40:39Z) - Spectro-Temporal Deep Features for Disordered Speech Assessment and
Recognition [65.25325641528701]
音声スペクトルのSVD分解による深い特徴を埋め込んだ新しいスペクトル時空間ベースを提案する。
UASpeechコーパスで行った実験では、提案された分光時間深部特徴適応システムは、データ拡張の有無にかかわらず、ワードエラー率(WER)を最大263%(相対8.6%)削減することで、ベースラインi-適応を一貫して上回ったことが示唆された。
論文 参考訳(メタデータ) (2022-01-14T16:56:43Z) - Learning Explicit Prosody Models and Deep Speaker Embeddings for
Atypical Voice Conversion [60.808838088376675]
本稿では,明示的な韻律モデルと深層話者埋め込み学習を用いたVCシステムを提案する。
韻律補正器は音素埋め込みを取り入れ、典型的な音素持続時間とピッチ値を推定する。
変換モデルは、音素埋め込みと典型的な韻律特徴を入力として、変換された音声を生成する。
論文 参考訳(メタデータ) (2020-11-03T13:08:53Z) - Learning not to Discriminate: Task Agnostic Learning for Improving
Monolingual and Code-switched Speech Recognition [12.354292498112347]
本稿では、ドメイン逆学習を用いてタスクモデルを訓練することにより、これまでの作業よりもさらに改善する。
提案手法は,単語誤り率(WER)を3つの言語対に対して単言語およびコード切替テストセットで削減する。
論文 参考訳(メタデータ) (2020-06-09T13:45:30Z) - End-to-End Neural Diarization: Reformulating Speaker Diarization as
Simple Multi-label Classification [45.38809571153867]
本稿では,ニューラルネットワークが直接話者ダイアリゼーション結果を出力するエンド・ツー・エンド・ニューラルダイアリゼーション(EEND)を提案する。
話者セグメントラベルとマルチスピーカ記録を連携させることにより,本モデルは実際の会話に容易に適応できる。
論文 参考訳(メタデータ) (2020-02-24T14:53:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。