論文の概要: Common Steps in Machine Learning Might Hinder The Explainability Aims in Medicine
- arxiv url: http://arxiv.org/abs/2409.00155v1
- Date: Fri, 30 Aug 2024 12:09:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 16:37:47.959651
- Title: Common Steps in Machine Learning Might Hinder The Explainability Aims in Medicine
- Title(参考訳): 機械学習の一般的なステップは、医学における説明可能性を妨げる
- Authors: Ahmed M Salih,
- Abstract要約: 本稿では、機械学習におけるデータ前処理のステップとそのモデルの説明可能性および解釈可能性への影響について論じる。
これらのステップはモデルの精度を向上させるが、特に医学において慎重に考慮されていない場合、モデルの説明可能性を妨げる可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data pre-processing is a significant step in machine learning to improve the performance of the model and decreases the running time. This might include dealing with missing values, outliers detection and removing, data augmentation, dimensionality reduction, data normalization and handling the impact of confounding variables. Although it is found the steps improve the accuracy of the model, but they might hinder the explainability of the model if they are not carefully considered especially in medicine. They might block new findings when missing values and outliers removal are implemented inappropriately. In addition, they might make the model unfair against all the groups in the model when making the decision. Moreover, they turn the features into unitless and clinically meaningless and consequently not explainable. This paper discusses the common steps of the data preprocessing in machine learning and their impacts on the explainability and interpretability of the model. Finally, the paper discusses some possible solutions that improve the performance of the model while not decreasing its explainability.
- Abstract(参考訳): データ前処理は機械学習における重要なステップであり、モデルの性能を改善し、実行時間を短縮する。
これには、欠落した値の処理、外れ値の検出と削除、データ拡張、次元の削減、データの正規化、境界変数の影響の処理が含まれる。
モデルの精度は向上するが、特に医学において慎重に考慮されていない場合、モデルの説明可能性を妨げる可能性がある。
欠落した値と外れ値が不適切に実装された場合、新しい発見をブロックする可能性がある。
さらに、決定を下す際には、モデル内のすべてのグループに対してモデルが不公平になる可能性がある。
さらに、これらの特徴を単体で臨床的に意味のないものにし、したがって説明できない。
本稿では、機械学習におけるデータ前処理の共通ステップと、モデルの説明可能性と解釈可能性への影響について論じる。
最後に,その説明可能性の低下を抑えつつ,モデルの性能を向上する可能性について論じる。
関連論文リスト
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - Explainability of Machine Learning Models under Missing Data [2.880748930766428]
データ不足は、モデルの性能と解釈可能性を著しく損なうおそれのある問題である。
本稿では, 欠落データ分野の展開を要約し, 種々の計算法がシェープリー値の計算に与える影響について考察する。
論文 参考訳(メタデータ) (2024-06-29T11:31:09Z) - Data augmentation and explainability for bias discovery and mitigation
in deep learning [0.0]
この論文は、ディープニューラルネットワークにおけるバイアスの影響を調査し、モデルパフォーマンスへの影響を減らす方法を提案する。
最初の部分は、データやモデルのバイアスやエラーの潜在的な原因を分類し、記述することから始まり、特に機械学習パイプラインのバイアスに焦点を当てている。
次の章では、予測と制御を正当化し、モデルを改善する手段として、説明可能なAIの分類と方法について概説する。
論文 参考訳(メタデータ) (2023-08-18T11:02:27Z) - AI Model Disgorgement: Methods and Choices [127.54319351058167]
本稿では,現代の機械学習システムに適用可能な分類法を紹介する。
学習モデルにおけるデータ「効果の除去」の意味を,スクラッチからリトレーニングする必要のない方法で検討する。
論文 参考訳(メタデータ) (2023-04-07T08:50:18Z) - PROMISSING: Pruning Missing Values in Neural Networks [0.0]
本稿では,ニューラルネットワークの学習と推論の段階において,欠落値(PROMISSing)を抽出する,シンプルで直感的かつ効果的な手法を提案する。
実験の結果, ProMISSing は様々な計算手法と比較して予測性能が良くなることがわかった。
論文 参考訳(メタデータ) (2022-06-03T15:37:27Z) - Machine Unlearning of Features and Labels [72.81914952849334]
機械学習モデルにおけるアンラーニングとラベルのファーストシナリオを提案する。
提案手法は,影響関数の概念に基づいて,モデルパラメータのクローズドフォーム更新によるアンラーニングを実現する。
論文 参考訳(メタデータ) (2021-08-26T04:42:24Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Agree to Disagree: When Deep Learning Models With Identical
Architectures Produce Distinct Explanations [0.0]
我々は,MIMIC-CXRデータセットの特定問題を強調するために,説明整合性の尺度を導入する。
同じモデルの説明がありますが、異なるトレーニングセットアップでは一貫性が低く、平均で$approx$ 33%です。
モデル説明の現在のトレンドは、実生活の医療アプリケーションにおけるモデル展開のリスクを軽減するのに十分ではないと結論づける。
論文 参考訳(メタデータ) (2021-05-14T12:16:47Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
本稿では,新しいタイプの解釈可能な機械学習手法を提案する。
量子シフトを用いた分類モデルでは、特徴空間の予測クラスへの分割を理解するのに役立ちます。
基本的に、実際のデータポイント(または特定の関心点)を使用し、特定の特徴をわずかに引き上げたり減少させたりした後の予測の変化を観察する。
論文 参考訳(メタデータ) (2020-09-11T16:35:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。