論文の概要: Structuring Quantitative Image Analysis with Object Prominence
- arxiv url: http://arxiv.org/abs/2409.00216v1
- Date: Fri, 30 Aug 2024 19:05:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 16:18:33.983538
- Title: Structuring Quantitative Image Analysis with Object Prominence
- Title(参考訳): 物体プロミネンスを用いた定量的画像解析の構造化
- Authors: Christian Arnold, Andreas Küpfer,
- Abstract要約: データとして画像を分析するための重要なステップとして,オブジェクトの優位性について慎重に検討する。
我々の手法は質的な分析と定量的アプローチのスケーラビリティを組み合わせる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When photographers and other editors of image material produce an image, they make a statement about what matters by situating some objects in the foreground and others in the background. While this prominence of objects is a key analytical category to qualitative scholars, recent quantitative approaches to automated image analysis have not yet made this important distinction but treat all areas of an image similarly. We suggest carefully considering objects' prominence as an essential step in analyzing images as data. Its modeling requires defining an object and operationalizing and measuring how much attention a human eye would pay. Our approach combines qualitative analyses with the scalability of quantitative approaches. Exemplifying object prominence with different implementations -- object size and centeredness, the pixels' image depth, and salient image regions -- we showcase the usefulness of our approach with two applications. First, we scale the ideology of eight US newspapers based on images. Second, we analyze the prominence of women in the campaign videos of the U.S. presidential races in 2016 and 2020. We hope that our article helps all keen to study image data in a conceptually meaningful way at scale.
- Abstract(参考訳): フォトグラファーや画像素材の編集者が画像を作成すると、前景の物や背景の物から何が重要なのかを述べる。
このオブジェクトの優位性は、定性的研究者にとって重要な分析カテゴリであるが、最近の自動画像解析への定量的アプローチは、この重要な区別をしていないが、画像のすべての領域を同じように扱う。
データとして画像を分析するための重要なステップとして,オブジェクトの優位性について慎重に検討する。
そのモデリングでは、対象を定義し、人間の目がどれだけ注意を払うかを測定し測定する必要がある。
我々の手法は質的な分析と定量的アプローチのスケーラビリティを組み合わせる。
異なる実装 – オブジェクトサイズと中心性,ピクセルのイメージ深度,高精細なイメージ領域など – によるオブジェクトの優位性を実証し,2つのアプリケーションでアプローチの有用性を示す。
まず、画像に基づいて8つのアメリカの新聞のイデオロギーを拡大する。
第2に、2016年と2020年の米国大統領選挙のキャンペーンビデオにおける女性の優位性を分析します。
われわれの記事は、概念的に意味のある方法で画像データの研究を熱心に支援してくれることを願っている。
関連論文リスト
- For a semiotic AI: Bridging computer vision and visual semiotics for computational observation of large scale facial image archives [3.418398936676879]
この研究は、ソーシャルメディアプラットフォームにおける画像の社会的・文化的影響を大規模に調査するためのフレームワークであるFRESCOを提示する。
FRESCOは、最新のコンピュータビジョン技術を用いて、画像を数値変数と分類変数に分解する。
このフレームワークは、線や色のような基本的な視覚的特徴を含むプラスティックレベル、特定の実体や概念を表す図形レベル、特にオブザーバーとオブザーバーの視点を構築することに焦点を当てた啓示レベルという3つのレベルにわたって画像を分析する。
論文 参考訳(メタデータ) (2024-07-03T16:57:38Z) - Are These the Same Apple? Comparing Images Based on Object Intrinsics [27.43687450076182]
オブジェクトの同一性を定義する固有のオブジェクトプロパティに基づいて、純粋に画像の類似性を測定する。
この問題はコンピュータビジョン文学において再同定として研究されている。
そこで本研究では,オブジェクト固有性に基づく画像類似度尺度を探索し,一般対象カテゴリに拡張することを提案する。
論文 参考訳(メタデータ) (2023-11-01T18:00:03Z) - Spotlight Attention: Robust Object-Centric Learning With a Spatial
Locality Prior [88.9319150230121]
オブジェクト中心のビジョンは、シーン内のオブジェクトの明示的な表現を構築することを目的としています。
我々は、空間的局所性を最先端のオブジェクト中心視覚モデルに組み込む。
合成および実世界の両方のデータセットにおけるセグメンテーションオブジェクトの大幅な改善が得られた。
論文 参考訳(メタデータ) (2023-05-31T04:35:50Z) - ImageSubject: A Large-scale Dataset for Subject Detection [9.430492045581534]
主に被写体は、写真家が強調したいものなので、通常、画像やビデオの中に存在します。
主対象を検出することは、機械が画像やビデオの内容を理解するのを助ける重要な技術である。
我々は、オブジェクトのレイアウトを理解し、その中の主要な対象を見つけるために、モデルのトレーニングを目標とする新しいデータセットを提案する。
論文 参考訳(メタデータ) (2022-01-09T22:49:59Z) - From Show to Tell: A Survey on Image Captioning [48.98681267347662]
視覚と言語を結びつけることは、ジェネレーティブ・インテリジェンスにおいて重要な役割を担っている。
画像キャプションの研究はまだ結論に達していない。
本研究の目的は,画像キャプション手法の包括的概要と分類を提供することである。
論文 参考訳(メタデータ) (2021-07-14T18:00:54Z) - Automatic Main Character Recognition for Photographic Studies [78.88882860340797]
画像の主人公は、最初に見る人の注意を引く最も重要な人間である。
画像中の主文字の同定は,従来の写真研究やメディア分析において重要な役割を担っている。
機械学習に基づく人間のポーズ推定を用いて主文字を識別する手法を提案する。
論文 参考訳(メタデータ) (2021-06-16T18:14:45Z) - Common Limitations of Image Processing Metrics: A Picture Story [58.83274952067888]
本論文は, 画像レベルの分類, セマンティックセグメンテーション, インスタンスセグメンテーション, オブジェクト検出タスクと表現できるバイオメディカル画像解析問題に焦点を当てる。
現在のバージョンは、世界中の60以上の機関からの画像分析の専門家からなる国際コンソーシアムが実施するメトリクスに関するDelphiプロセスに基づいている。
論文 参考訳(メタデータ) (2021-04-12T17:03:42Z) - A Survey of Hand Crafted and Deep Learning Methods for Image Aesthetic
Assessment [2.9005223064604078]
本稿では,最近の自動画像美学評価技術について文献的考察を行う。
伝統的なハンドクラフトとディープラーニングベースのアプローチが多数レビューされています。
論文 参考訳(メタデータ) (2021-03-22T07:00:56Z) - A Simple and Effective Use of Object-Centric Images for Long-Tailed
Object Detection [56.82077636126353]
シーン中心画像における物体検出を改善するために,物体中心画像を活用する。
私たちは、シンプルで驚くほど効果的なフレームワークを提示します。
我々の手法は、レアオブジェクトのオブジェクト検出(およびインスタンスセグメンテーション)の精度を相対的に50%(および33%)向上させることができる。
論文 参考訳(メタデータ) (2021-02-17T17:27:21Z) - Intentonomy: a Dataset and Study towards Human Intent Understanding [65.49299806821791]
視覚情報がどのように人間の意図を認識するかを分析することを目的として,ソーシャルメディア画像の背景にある意図について検討する。
インテント・データセットであるIntentonomyを導入し,14K画像で様々な日常シーンをカバーした。
次に、視覚情報、すなわち、対象と文脈が人間の動機理解に寄与するかどうかを体系的に研究する。
論文 参考訳(メタデータ) (2020-11-11T05:39:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。