Exact Recovery Guarantees for Parameterized Nonlinear System Identification Problem under Sparse Disturbances or Semi-Oblivious Attacks
- URL: http://arxiv.org/abs/2409.00276v3
- Date: Thu, 20 Mar 2025 19:48:54 GMT
- Title: Exact Recovery Guarantees for Parameterized Nonlinear System Identification Problem under Sparse Disturbances or Semi-Oblivious Attacks
- Authors: Haixiang Zhang, Baturalp Yalcin, Javad Lavaei, Eduardo D. Sontag,
- Abstract summary: We study the problem of learning a nonlinear dynamical system by parameterizing its dynamics using basis functions.<n>We show that finite-time exact recovery is achieved with high probability, even when $p$ approaches 1.
- Score: 16.705631360131886
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, we study the problem of learning a nonlinear dynamical system by parameterizing its dynamics using basis functions. We assume that disturbances occur at each time step with an arbitrary probability $p$, which models the sparsity level of the disturbance vectors over time. These disturbances are drawn from an arbitrary, unknown probability distribution, which may depend on past disturbances, provided that it satisfies a zero-mean assumption. The primary objective of this paper is to learn the system's dynamics within a finite time and analyze the sample complexity as a function of $p$. To achieve this, we examine a LASSO-type non-smooth estimator, and establish necessary and sufficient conditions for its well-specifiedness and the uniqueness of the global solution to the underlying optimization problem. We then provide exact recovery guarantees for the estimator under two distinct conditions: boundedness and Lipschitz continuity of the basis functions. We show that finite-time exact recovery is achieved with high probability, even when $p$ approaches 1. Unlike prior works, which primarily focus on independent and identically distributed (i.i.d.) disturbances and provide only asymptotic guarantees for system learning, this study presents the first finite-time analysis of nonlinear dynamical systems under a highly general disturbance model. Our framework allows for possible temporal correlations in the disturbances and accommodates semi-oblivious adversarial attacks, significantly broadening the scope of existing theoretical results.
Related papers
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems.
We show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks.
arXiv Detail & Related papers (2024-10-22T10:19:27Z) - Embedding generalization within the learning dynamics: An approach based-on sample path large deviation theory [0.0]
We consider an empirical risk perturbation based learning problem that exploits methods from continuous-time perspective.
We provide an estimate in the small noise limit based on the Freidlin-Wentzell theory of large deviations.
We also present a computational algorithm that solves the corresponding variational problem leading to an optimal point estimates.
arXiv Detail & Related papers (2024-08-04T23:31:35Z) - Randomized algorithms and PAC bounds for inverse reinforcement learning in continuous spaces [47.907236421762626]
This work studies discrete-time discounted Markov decision processes with continuous state and action spaces.
We first consider the case in which we have access to the entire expert policy and characterize the set of solutions to the inverse problem.
arXiv Detail & Related papers (2024-05-24T12:53:07Z) - A least-square method for non-asymptotic identification in linear switching control [17.938732931331064]
It is known that the underlying partially-observed linear dynamical system lies within a finite collection of known candidate models.
We characterize the finite-time sample complexity of this problem by leveraging recent advances in the non-asymptotic analysis of linear least-square methods.
We propose a data-driven switching strategy that identifies the unknown parameters of the underlying system.
arXiv Detail & Related papers (2024-04-11T20:55:38Z) - Global Convergence of Online Identification for Mixed Linear Regression [1.9295130374196499]
Mixed linear regression (MLR) is a powerful model for characterizing nonlinear relationships.
This paper investigates the online identification and data clustering problems for two basic classes of MLRs.
It introduces two corresponding new online identification algorithms based on the expectation-maximization principle.
arXiv Detail & Related papers (2023-11-30T12:30:42Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Exact Recovery for System Identification with More Corrupt Data than Clean Data [17.310966086344777]
This paper investigates the system identification problem for linear discrete-time systems under adversaries.
We show that when the system is stable and attacks are injected periodically, the sample complexity for exact recovery of the system dynamics is linear.
As a by-product, our estimators still learn the system correctly even when more than half of the data is compromised.
arXiv Detail & Related papers (2023-05-17T18:21:37Z) - A Robustness Analysis of Blind Source Separation [91.3755431537592]
Blind source separation (BSS) aims to recover an unobserved signal from its mixture $X=f(S)$ under the condition that the transformation $f$ is invertible but unknown.
We present a general framework for analysing such violations and quantifying their impact on the blind recovery of $S$ from $X$.
We show that a generic BSS-solution in response to general deviations from its defining structural assumptions can be profitably analysed in the form of explicit continuity guarantees.
arXiv Detail & Related papers (2023-03-17T16:30:51Z) - PAPAL: A Provable PArticle-based Primal-Dual ALgorithm for Mixed Nash Equilibrium [58.26573117273626]
We consider the non-AL equilibrium nonconptotic objective function in two-player zero-sum continuous games.
Our novel insights into the particle-based algorithms for continuous distribution strategies are presented.
arXiv Detail & Related papers (2023-03-02T05:08:15Z) - A Learning-Based Optimal Uncertainty Quantification Method and Its
Application to Ballistic Impact Problems [1.713291434132985]
This paper concerns the optimal (supremum and infimum) uncertainty bounds for systems where the input (or prior) measure is only partially/imperfectly known.
We demonstrate the learning based framework on the uncertainty optimization problem.
We show that the approach can be used to construct maps for the performance certificate and safety in engineering practice.
arXiv Detail & Related papers (2022-12-28T14:30:53Z) - Robust identification of non-autonomous dynamical systems using
stochastic dynamics models [0.0]
This paper considers the problem of system identification (ID) of linear and nonlinear non-autonomous systems from noisy and sparse data.
We propose and analyze an objective function derived from a Bayesian formulation for learning a hidden Markov model.
We show that our proposed approach has improved smoothness and inherent regularization that make it well-suited for system ID.
arXiv Detail & Related papers (2022-12-20T16:36:23Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
We propose a sequential quadratic programming algorithm (TR-StoSQP) to solve nonlinear optimization problems with objectives and deterministic equality constraints.
The algorithm adaptively selects the trust-region radius and, compared to the existing line-search StoSQP schemes, allows us to utilize indefinite Hessian matrices.
arXiv Detail & Related papers (2022-11-29T05:52:17Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Reinforcement Learning Policies in Continuous-Time Linear Systems [0.0]
We present online policies that learn optimal actions fast by carefully randomizing the parameter estimates.
We prove sharp stability results for inexact system dynamics and tightly specify the infinitesimal regret caused by sub-optimal actions.
Our analysis sheds light on fundamental challenges in continuous-time reinforcement learning and suggests a useful cornerstone for similar problems.
arXiv Detail & Related papers (2021-09-16T00:08:50Z) - A general sample complexity analysis of vanilla policy gradient [101.16957584135767]
Policy gradient (PG) is one of the most popular reinforcement learning (RL) problems.
"vanilla" theoretical understanding of PG trajectory is one of the most popular methods for solving RL problems.
arXiv Detail & Related papers (2021-07-23T19:38:17Z) - Nonasymptotic Guarantees for Spiked Matrix Recovery with Generative
Priors [12.798687476698063]
We study an alternative prior where the low-rank component is in the range of a trained generative network.
We establish a favorable global optimization landscape for a nonlinear least squares objective.
This result suggests that generative priors have no computational-to-statistical gap for structured rank-one matrix recovery.
arXiv Detail & Related papers (2020-06-14T16:46:16Z) - On dissipative symplectic integration with applications to
gradient-based optimization [77.34726150561087]
We propose a geometric framework in which discretizations can be realized systematically.
We show that a generalization of symplectic to nonconservative and in particular dissipative Hamiltonian systems is able to preserve rates of convergence up to a controlled error.
arXiv Detail & Related papers (2020-04-15T00:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.