Robust identification of non-autonomous dynamical systems using
stochastic dynamics models
- URL: http://arxiv.org/abs/2212.13902v1
- Date: Tue, 20 Dec 2022 16:36:23 GMT
- Title: Robust identification of non-autonomous dynamical systems using
stochastic dynamics models
- Authors: Nicholas Galioto and Alex Arkady Gorodetsky
- Abstract summary: This paper considers the problem of system identification (ID) of linear and nonlinear non-autonomous systems from noisy and sparse data.
We propose and analyze an objective function derived from a Bayesian formulation for learning a hidden Markov model.
We show that our proposed approach has improved smoothness and inherent regularization that make it well-suited for system ID.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper considers the problem of system identification (ID) of linear and
nonlinear non-autonomous systems from noisy and sparse data. We propose and
analyze an objective function derived from a Bayesian formulation for learning
a hidden Markov model with stochastic dynamics. We then analyze this objective
function in the context of several state-of-the-art approaches for both linear
and nonlinear system ID. In the former, we analyze least squares approaches for
Markov parameter estimation, and in the latter, we analyze the multiple
shooting approach. We demonstrate the limitations of the optimization problems
posed by these existing methods by showing that they can be seen as special
cases of the proposed optimization objective under certain simplifying
assumptions: conditional independence of data and zero model error.
Furthermore, we observe that our proposed approach has improved smoothness and
inherent regularization that make it well-suited for system ID and provide
mathematical explanations for these characteristics' origins. Finally,
numerical simulations demonstrate a mean squared error over 8.7 times lower
compared to multiple shooting when data are noisy and/or sparse. Moreover, the
proposed approach can identify accurate and generalizable models even when
there are more parameters than data or when the underlying system exhibits
chaotic behavior.
Related papers
- Probabilistic Numeric SMC Sampling for Bayesian Nonlinear System Identification in Continuous Time [0.0]
In engineering, accurately modeling nonlinear dynamic systems from data contaminated by noise is both essential and complex.
The integration of continuous-time ordinary differential equations (ODEs) is crucial for aligning theoretical models with discretely sampled data.
This paper demonstrates the application of a probabilistic numerical method for solving ODEs in the joint parameter-state identification of nonlinear dynamic systems.
arXiv Detail & Related papers (2024-04-19T14:52:14Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
This paper develops a new iterative learning algorithm for complex turbulent systems with partial observations.
It alternates between identifying model structures, recovering unobserved variables, and estimating parameters.
Numerical experiments show that the new algorithm succeeds in identifying the model structure and providing suitable parameterizations for many complex nonlinear systems.
arXiv Detail & Related papers (2022-08-19T00:35:03Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
We revisit a model for time-varying linear regression that assumes the unknown parameters evolve according to a linear dynamical system.
Counterintuitively, we show that when the underlying dynamics are stable the parameters of this model can be estimated from data by combining just two ordinary least squares estimates.
arXiv Detail & Related papers (2021-12-29T23:37:06Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - System identification using Bayesian neural networks with nonparametric
noise models [0.0]
We propose a nonparametric approach for system identification in discrete time nonlinear random dynamical systems.
A Gibbs sampler for posterior inference is proposed and its effectiveness is illustrated in simulated and real time series.
arXiv Detail & Related papers (2021-04-25T09:49:50Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Bayesian differential programming for robust systems identification
under uncertainty [14.169588600819546]
This paper presents a machine learning framework for Bayesian systems identification from noisy, sparse and irregular observations of nonlinear dynamical systems.
The proposed method takes advantage of recent developments in differentiable programming to propagate gradient information through ordinary differential equation solvers.
The use of sparsity-promoting priors enables the discovery of interpretable and parsimonious representations for the underlying latent dynamics.
arXiv Detail & Related papers (2020-04-15T00:51:14Z) - Bayesian System ID: Optimal management of parameter, model, and
measurement uncertainty [0.0]
We evaluate the robustness of a probabilistic formulation of system identification (ID) to sparse, noisy, and indirect data.
We show that the log posterior has improved geometric properties compared with the objective function surfaces of traditional methods.
arXiv Detail & Related papers (2020-03-04T22:48:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.