論文の概要: Reproducibility Study Of Learning Fair Graph Representations Via Automated Data Augmentations
- arxiv url: http://arxiv.org/abs/2409.00421v1
- Date: Sat, 31 Aug 2024 11:28:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 14:49:38.622483
- Title: Reproducibility Study Of Learning Fair Graph Representations Via Automated Data Augmentations
- Title(参考訳): 自動データ拡張による公正グラフ表現学習の再現性の検討
- Authors: Thijmen Nijdam, Juell Sprott, Taiki Papandreou-Lazos, Jurgen de Heus,
- Abstract要約: リンク予測タスクにおけるGraphairフレームワークの性能について検討する。
我々の発見はグラフベースの学習において、Graphairが広く採用される可能性を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we undertake a reproducibility analysis of 'Learning Fair Graph Representations Via Automated Data Augmentations' by Ling et al. (2022). We assess the validity of the original claims focused on node classification tasks and explore the performance of the Graphair framework in link prediction tasks. Our investigation reveals that we can partially reproduce one of the original three claims and fully substantiate the other two. Additionally, we broaden the application of Graphair from node classification to link prediction across various datasets. Our findings indicate that, while Graphair demonstrates a comparable fairness-accuracy trade-off to baseline models for mixed dyadic-level fairness, it has a superior trade-off for subgroup dyadic-level fairness. These findings underscore Graphair's potential for wider adoption in graph-based learning. Our code base can be found on GitHub at https://github.com/juellsprott/graphair-reproducibility.
- Abstract(参考訳): 本研究では,Ling et al (2022)による'Learning Fair Graph Representations Via Automated Data Augmentations'の再現性解析を行った。
ノード分類タスクに着目した元のクレームの有効性を評価し,リンク予測タスクにおけるGraphairフレームワークの性能について検討する。
調査の結果,元の3つの主張のうちの1つを部分的に再現し,他の2つを完全に裏付けることが可能であることが判明した。
さらに、ノード分類からさまざまなデータセット間のリンク予測まで、Graphairの適用範囲を広げる。
以上の結果から,Graphairは混合ダイアディックレベルのフェアネスのベースラインモデルと同等のフェアネス精度のトレードオフを示す一方で,サブグループダイアディックレベルのフェアネスのトレードオフが優れていることが示唆された。
これらの知見はグラフベースの学習に広く採用される可能性を示している。
コードベースはGitHubでhttps://github.com/juellsprott/graphair-reproducibilityで確認できます。
関連論文リスト
- RAGraph: A General Retrieval-Augmented Graph Learning Framework [35.25522856244149]
我々は、RAGraph(General Retrieval-Augmented Graph Learning)と呼ばれる新しいフレームワークを紹介する。
RAGraphは、一般的なグラフ基盤モデルに外部グラフデータを導入し、目に見えないシナリオにおけるモデルの一般化を改善する。
推論中、RAGraphは下流タスクにおける重要な類似性に基づいて、似たようなおもちゃのグラフを順応的に検索する。
論文 参考訳(メタデータ) (2024-10-31T12:05:21Z) - Graph Fairness Learning under Distribution Shifts [33.9878682279549]
グラフニューラルネットワーク(GNN)は、グラフ構造化データにおいて顕著なパフォーマンスを実現している。
GNNは、トレーニングデータから偏見を継承し、性別や人種などのセンシティブな属性に基づいて差別予測を行うことができる。
本稿では,異なる距離で有意な偏差を持つ多数のグラフを生成するグラフ生成器を提案する。
論文 参考訳(メタデータ) (2024-01-30T06:51:24Z) - Hybrid Augmented Automated Graph Contrastive Learning [3.785553471764994]
本稿では,Hybrid Augmented Automated Graph Contrastive Learning (HAGCL) というフレームワークを提案する。
HAGCLは機能レベルの学習可能なビュージェネレータとエッジレベルの学習可能なビュージェネレータで構成される。
特徴とトポロジの観点から最も意味のある構造を学ぶことを保証します。
論文 参考訳(メタデータ) (2023-03-24T03:26:20Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
従来見過ごされていた現象を調査し、多くの場合、元のグラフに対して密に連結された補グラフを見つけることができる。
より密度の高いグラフは、選択的で有意義な知識を伝達するための自然なブリッジを提供する元のグラフとノードを共有することができる。
この設定をグラフインターセクション誘導トランスファーラーニング(GITL)とみなし,eコマースや学術共同オーサシップ予測の実践的応用に動機づけられた。
論文 参考訳(メタデータ) (2023-02-27T22:56:06Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
コントラスト学習は、監督の有無にかかわらず、表現を学習するための第一の方法として現れてきた。
近年の研究では、グラフ表現学習における事前学習の有用性が示されている。
本稿では,グラフの対照的な目的に対する拡張を構築する際に,候補のバンクを提供するためのグラフ変換操作を提案する。
論文 参考訳(メタデータ) (2023-02-06T16:26:29Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
トレーニングセット内の既存グラフから直接正のグラフインスタンスを選択することを提案する。
私たちの選択は、特定のドメイン固有のペアワイズ類似度測定に基づいています。
さらに,ノードを動的にマスキングしてグラフ上に均等に分配する適応ノードレベルの事前学習手法を開発した。
論文 参考訳(メタデータ) (2022-06-23T20:12:51Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
離散性に基づく自己監督型LeArning(D-SLA)と呼ばれる原図と摂動グラフの正確な相違を学習することを目的としたフレームワークを提案する。
本稿では,分子特性予測,タンパク質機能予測,リンク予測タスクなど,グラフ関連下流タスクにおける本手法の有効性を検証する。
論文 参考訳(メタデータ) (2022-02-07T08:04:59Z) - Fair Node Representation Learning via Adaptive Data Augmentation [9.492903649862761]
この研究は、グラフニューラルネットワーク(GNN)を用いて得られるノード表現のバイアス源を理論的に説明する。
この分析に基づいて、本質的なバイアスを低減するために、公正に意識したデータ拡張フレームワークを開発した。
分析と提案手法は,様々なGNN学習機構の公平性を高めるために容易に利用できる。
論文 参考訳(メタデータ) (2022-01-21T05:49:15Z) - Graph Representation Learning by Ensemble Aggregating Subgraphs via
Mutual Information Maximization [5.419711903307341]
グラフニューラルネットワークが学習するグラフレベルの表現を高めるための自己監視型学習法を提案する。
グラフ構造を網羅的に理解するために,サブグラフ法のようなアンサンブル学習を提案する。
また, 効率的かつ効果的な対位学習を実現するために, ヘッドテールコントラストサンプル構築法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。