Reproducibility Study Of Learning Fair Graph Representations Via Automated Data Augmentations
- URL: http://arxiv.org/abs/2409.00421v1
- Date: Sat, 31 Aug 2024 11:28:22 GMT
- Title: Reproducibility Study Of Learning Fair Graph Representations Via Automated Data Augmentations
- Authors: Thijmen Nijdam, Juell Sprott, Taiki Papandreou-Lazos, Jurgen de Heus,
- Abstract summary: We explore the performance of the Graphair framework in link prediction tasks.
Our findings underscore Graphair's potential for wider adoption in graph-based learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we undertake a reproducibility analysis of 'Learning Fair Graph Representations Via Automated Data Augmentations' by Ling et al. (2022). We assess the validity of the original claims focused on node classification tasks and explore the performance of the Graphair framework in link prediction tasks. Our investigation reveals that we can partially reproduce one of the original three claims and fully substantiate the other two. Additionally, we broaden the application of Graphair from node classification to link prediction across various datasets. Our findings indicate that, while Graphair demonstrates a comparable fairness-accuracy trade-off to baseline models for mixed dyadic-level fairness, it has a superior trade-off for subgroup dyadic-level fairness. These findings underscore Graphair's potential for wider adoption in graph-based learning. Our code base can be found on GitHub at https://github.com/juellsprott/graphair-reproducibility.
Related papers
- RAGraph: A General Retrieval-Augmented Graph Learning Framework [35.25522856244149]
We introduce a novel framework called General Retrieval-Augmented Graph Learning (RAGraph)
RAGraph brings external graph data into the general graph foundation model to improve model generalization on unseen scenarios.
During inference, the RAGraph adeptly retrieves similar toy graphs based on key similarities in downstream tasks.
arXiv Detail & Related papers (2024-10-31T12:05:21Z) - Graph Fairness Learning under Distribution Shifts [33.9878682279549]
Graph neural networks (GNNs) have achieved remarkable performance on graph-structured data.
GNNs may inherit prejudice from the training data and make discriminatory predictions based on sensitive attributes, such as gender and race.
We propose a graph generator to produce numerous graphs with significant bias and under different distances.
arXiv Detail & Related papers (2024-01-30T06:51:24Z) - Hybrid Augmented Automated Graph Contrastive Learning [3.785553471764994]
We propose a framework called Hybrid Augmented Automated Graph Contrastive Learning (HAGCL)
HAGCL consists of a feature-level learnable view generator and an edge-level learnable view generator.
It insures to learn the most semantically meaningful structure in terms of features and topology.
arXiv Detail & Related papers (2023-03-24T03:26:20Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
We investigate a previously overlooked phenomenon: in many cases, a densely connected, complementary graph can be found for the original graph.
The denser graph may share nodes with the original graph, which offers a natural bridge for transferring selective, meaningful knowledge.
We identify this setting as Graph Intersection-induced Transfer Learning (GITL), which is motivated by practical applications in e-commerce or academic co-authorship predictions.
arXiv Detail & Related papers (2023-02-27T22:56:06Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
We propose to select positive graph instances directly from existing graphs in the training set.
Our selection is based on certain domain-specific pair-wise similarity measurements.
Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph.
arXiv Detail & Related papers (2022-06-23T20:12:51Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
We propose a framework that aims to learn the exact discrepancy between the original and the perturbed graphs, coined as Discrepancy-based Self-supervised LeArning (D-SLA)
We validate our method on various graph-related downstream tasks, including molecular property prediction, protein function prediction, and link prediction tasks, on which our model largely outperforms relevant baselines.
arXiv Detail & Related papers (2022-02-07T08:04:59Z) - Fair Node Representation Learning via Adaptive Data Augmentation [9.492903649862761]
This work theoretically explains the sources of bias in node representations obtained via Graph Neural Networks (GNNs)
Building upon the analysis, fairness-aware data augmentation frameworks are developed to reduce the intrinsic bias.
Our analysis and proposed schemes can be readily employed to enhance the fairness of various GNN-based learning mechanisms.
arXiv Detail & Related papers (2022-01-21T05:49:15Z) - Graph Representation Learning by Ensemble Aggregating Subgraphs via
Mutual Information Maximization [5.419711903307341]
We introduce a self-supervised learning method to enhance the representations of graph-level learned by Graph Neural Networks.
To get a comprehensive understanding of the graph structure, we propose an ensemble-learning like subgraph method.
And to achieve efficient and effective contrasive learning, a Head-Tail contrastive samples construction method is proposed.
arXiv Detail & Related papers (2021-03-24T12:06:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.