Universal bound on the relaxation rates for quantum Markovian dynamics
- URL: http://arxiv.org/abs/2409.00436v1
- Date: Sat, 31 Aug 2024 12:15:45 GMT
- Title: Universal bound on the relaxation rates for quantum Markovian dynamics
- Authors: Paolo Muratore-Ginanneschi, Gen Kimura, Dariusz Chruściński,
- Abstract summary: We show that a maximal rate is bounded from above by the sum of all the relaxation rates divided by the dimension of the Hilbert space.
This constraint is universal (it is valid for all quantum systems with finite number of energy levels) and it is tight (cannot be improved)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relaxation rates provide important characteristics both for classical and quantum processes. Essentially they control how fast the system thermalizes, equilibrates, {decoheres, and/or dissipates}. Moreover, very often they are directly accessible to be measured in the laboratory and hence they define key physical properties of the system. Experimentally measured relaxation rates can be used to test validity of a particular theoretical model. Here we analyze a fundamental question: {\em does quantum mechanics provide any nontrivial constraint for relaxation rates?} We prove the conjecture formulated a few years ago that any quantum channel implies that a maximal rate is bounded from above by the sum of all the relaxation rates divided by the dimension of the Hilbert space. It should be stressed that this constraint is universal (it is valid for all quantum systems with finite number of energy levels) and it is tight (cannot be improved). In addition, the constraint plays an analogous role to the seminal Bell inequalities and the well known Leggett-Garg inequalities (sometimes called temporal Bell inequalities). Violations of Bell inequalities rule out local hidden variable models, and violations of Leggett-Garg inequalities rule out macrorealism. Similarly, violations of the bound rule out completely positive-divisible evolution.
Related papers
- A theory-independent bound saturated by quantum mechanics [0.0]
Tsirelson's original inequality for the precession protocol serves as a monopartite test of quantumness.
We consider this inequality for measurements with finitely many outcomes in a theory-independent manner.
arXiv Detail & Related papers (2024-01-29T13:23:55Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Discretised Hilbert Space and Superdeterminism [0.0]
In computational physics it is standard to approximate continuum systems with discretised representations.
We consider a specific discretisation of the continuum complex Hilbert space of quantum mechanics.
arXiv Detail & Related papers (2022-04-07T18:00:07Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Quantum gravity and the square of Bell operators [0.0]
The quantum mechanical world is under the control of the Heisenberg uncertainty principle (HUP) that is generalized by quantum gravity (QG) scenarios.
The achievements claim that the violation quality of the square of Bell inequalities may be a tool to get a better understanding of the quantum features of gravity.
arXiv Detail & Related papers (2021-06-28T05:20:29Z) - Quantum Bell inequalities from Information Causality -- tight for
Macroscopic Locality [0.34771439623170125]
In a Bell test, the set of observed probability distributions complying with the principle of local realism is fully characterized by Bell inequalities.
We present a family of inequalities, which approximate the set of quantum correlations in Bell scenarios where the number of settings or outcomes can be arbitrary.
arXiv Detail & Related papers (2021-03-08T19:36:13Z) - Deterministic Quantum Mechanics: the Mathematical Equations [0.0]
We write down the conditions for the Hamiltonian of a quantum system for rendering it mathematically equivalent to a deterministic system.
Various examples are worked out, followed by a systematic procedure to generate classical evolution laws and quantum Hamiltonians that are exactly equivalent.
arXiv Detail & Related papers (2020-05-13T15:35:14Z) - Bell's theorem for trajectories [62.997667081978825]
A trajectory is not an outcome of a quantum measurement, in the sense that there is no observable associated with it.
We show how to overcome this problem by considering a special case of our generic inequality that can be experimentally tested point-by-point in time.
arXiv Detail & Related papers (2020-01-03T01:40:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.