Evaluation of Prosumer Networks for Peak Load Management in Iran: A Distributed Contextual Stochastic Optimization Approach
- URL: http://arxiv.org/abs/2409.00493v1
- Date: Sat, 31 Aug 2024 16:09:38 GMT
- Title: Evaluation of Prosumer Networks for Peak Load Management in Iran: A Distributed Contextual Stochastic Optimization Approach
- Authors: Amir Noori, Babak Tavassoli, Alireza Fereidunian,
- Abstract summary: This paper introduces a novel prosumers network framework aimed at mitigating peak loads in Iran.
A cost-oriented integrated prediction and optimization approach is proposed, empowering prosumers to make informed decisions.
Numerical results highlights that integrating prediction with optimization and implementing a contextual information-sharing network among prosumers significantly reduces peak loads as well as total costs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Renewable prosumers face the complex challenge of balancing self-sufficiency with seamless grid and market integration. This paper introduces a novel prosumers network framework aimed at mitigating peak loads in Iran, particularly under the uncertainties inherent in renewable energy generation and demand. A cost-oriented integrated prediction and optimization approach is proposed, empowering prosumers to make informed decisions within a distributed contextual stochastic optimization (DCSO) framework. The problem is formulated as a bi-level two-stage multi-time scale optimization to determine optimal operation and interaction strategies under various scenarios, considering flexible resources. To facilitate grid integration, a novel consensus-based contextual information sharing mechanism is proposed. This approach enables coordinated collective behaviors and leverages contextual data more effectively. The overall problem is recast as a mixed-integer linear program (MILP) by incorporating optimality conditions and linearizing complementarity constraints. Additionally, a distributed algorithm using the consensus alternating direction method of multipliers (ADMM) is presented for computational tractability and privacy preservation. Numerical results highlights that integrating prediction with optimization and implementing a contextual information-sharing network among prosumers significantly reduces peak loads as well as total costs.
Related papers
- Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
A recent stream of structured learning approaches has improved the practical state of the art for a range of optimization problems.
The key idea is to exploit the statistical distribution over instances instead of dealing with instances separately.
In this article, we investigate methods that smooth the risk by perturbing the policy, which eases optimization and improves the generalization error.
arXiv Detail & Related papers (2024-07-24T12:00:30Z) - Applying Multi-Agent Negotiation to Solve the Production Routing Problem With Privacy Preserving [0.7373617024876724]
The integrated optimization of production, inventory, distribution, and routing decisions in real-world industry applications poses several challenges.
This paper proposes the use of intelligent agent negotiation within a hybrid Multi-Agent System (MAS) integrated with optimization algorithms.
arXiv Detail & Related papers (2024-06-13T15:15:34Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
We study the problem of distributed multi-level optimization over a network, where agents can only communicate with their immediate neighbors.
We propose a novel gossip-based distributed multi-level optimization algorithm that enables networked agents to solve optimization problems at different levels in a single timescale.
Our algorithm achieves optimal sample complexity, scaling linearly with the network size, and demonstrates state-of-the-art performance on various applications.
arXiv Detail & Related papers (2023-10-10T00:21:10Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Faster Last-iterate Convergence of Policy Optimization in Zero-Sum
Markov Games [63.60117916422867]
This paper focuses on the most basic setting of competitive multi-agent RL, namely two-player zero-sum Markov games.
We propose a single-loop policy optimization method with symmetric updates from both agents, where the policy is updated via the entropy-regularized optimistic multiplicative weights update (OMWU) method.
Our convergence results improve upon the best known complexities, and lead to a better understanding of policy optimization in competitive Markov games.
arXiv Detail & Related papers (2022-10-03T16:05:43Z) - Distributed Stochastic Bandit Learning with Context Distributions [0.0]
We study the problem of distributed multi-arm contextual bandit with unknown contexts.
In our model, an adversary chooses a distribution on the set of possible contexts and the agents observe only the context distribution and the exact context is unknown to the agents.
Our goal is to develop a distributed algorithm that selects a sequence of optimal actions to maximize the cumulative reward.
arXiv Detail & Related papers (2022-07-28T22:00:11Z) - Algorithm for Constrained Markov Decision Process with Linear
Convergence [55.41644538483948]
An agent aims to maximize the expected accumulated discounted reward subject to multiple constraints on its costs.
A new dual approach is proposed with the integration of two ingredients: entropy regularized policy and Vaidya's dual.
The proposed approach is shown to converge (with linear rate) to the global optimum.
arXiv Detail & Related papers (2022-06-03T16:26:38Z) - Sequential Information Design: Markov Persuasion Process and Its
Efficient Reinforcement Learning [156.5667417159582]
This paper proposes a novel model of sequential information design, namely the Markov persuasion processes (MPPs)
Planning in MPPs faces the unique challenge in finding a signaling policy that is simultaneously persuasive to the myopic receivers and inducing the optimal long-term cumulative utilities of the sender.
We design a provably efficient no-regret learning algorithm, the Optimism-Pessimism Principle for Persuasion Process (OP4), which features a novel combination of both optimism and pessimism principles.
arXiv Detail & Related papers (2022-02-22T05:41:43Z) - Sparse Optimization for Green Edge AI Inference [28.048770388766716]
We present a joint inference task selection and downlink beamforming strategy to achieve energy-efficient edge AI inference.
By exploiting the inherent connections between the set of task selection and group sparsity transmit beamforming vector, we reformulate the optimization as a group sparse beamforming problem.
We establish the global convergence analysis and provide the ergodic worst-case convergence rate for this algorithm.
arXiv Detail & Related papers (2020-02-24T05:21:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.