Global-Decision-Focused Neural ODEs for Proactive Grid Resilience Management
- URL: http://arxiv.org/abs/2502.18321v2
- Date: Fri, 21 Mar 2025 15:16:16 GMT
- Title: Global-Decision-Focused Neural ODEs for Proactive Grid Resilience Management
- Authors: Shuyi Chen, Ferdinando Fioretto, Feng Qiu, Shixiang Zhu,
- Abstract summary: We propose predict-all-then-optimize-globally (PATOG), a framework that integrates outage prediction with globally optimized interventions.<n>Our approach ensures spatially and temporally coherent decision-making, improving both predictive accuracy and operational efficiency.<n>Experiments on synthetic and real-world datasets demonstrate significant improvements in outage prediction consistency and grid resilience.
- Score: 50.34345101758248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extreme hazard events such as wildfires and hurricanes increasingly threaten power systems, causing widespread outages and disrupting critical services. Recently, predict-then-optimize approaches have gained traction in grid operations, where system functionality forecasts are first generated and then used as inputs for downstream decision-making. However, this two-stage method often results in a misalignment between prediction and optimization objectives, leading to suboptimal resource allocation. To address this, we propose predict-all-then-optimize-globally (PATOG), a framework that integrates outage prediction with globally optimized interventions. At its core, our global-decision-focused (GDF) neural ODE model captures outage dynamics while optimizing resilience strategies in a decision-aware manner. Unlike conventional methods, our approach ensures spatially and temporally coherent decision-making, improving both predictive accuracy and operational efficiency. Experiments on synthetic and real-world datasets demonstrate significant improvements in outage prediction consistency and grid resilience.
Related papers
- Semiparametric Counterfactual Regression [2.356908851188234]
We propose a doubly robust-style estimator for counterfactual regression within a generalizable framework.
Our approach uses incremental interventions to enhance adaptability while maintaining with standard methods.
Our analysis shows that the proposed estimators can achieve $sqrn$-consistency and normality for a broad class of problems.
arXiv Detail & Related papers (2025-04-03T15:32:26Z) - Nonmyopic Global Optimisation via Approximate Dynamic Programming [14.389086937116582]
We introduce novel nonmyopic acquisition strategies tailored to IDW- and RBF-based global optimisation.<n>Specifically, we develop dynamic programming-based paradigms, including rollout and multi-step scenario-based optimisation schemes.
arXiv Detail & Related papers (2024-12-06T09:25:00Z) - Understanding Optimization in Deep Learning with Central Flows [53.66160508990508]
We show that an RMS's implicit behavior can be explicitly captured by a "central flow:" a differential equation.
We show that these flows can empirically predict long-term optimization trajectories of generic neural networks.
arXiv Detail & Related papers (2024-10-31T17:58:13Z) - Evaluation of Prosumer Networks for Peak Load Management in Iran: A Distributed Contextual Stochastic Optimization Approach [0.0]
This paper introduces a novel prosumers network framework aimed at mitigating peak loads in Iran.
A cost-oriented integrated prediction and optimization approach is proposed, empowering prosumers to make informed decisions.
Numerical results highlights that integrating prediction with optimization and implementing a contextual information-sharing network among prosumers significantly reduces peak loads as well as total costs.
arXiv Detail & Related papers (2024-08-31T16:09:38Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Optimizing $CO_{2}$ Capture in Pressure Swing Adsorption Units: A Deep
Neural Network Approach with Optimality Evaluation and Operating Maps for
Decision-Making [0.0]
This study focuses on enhancing Pressure Swing Adsorption units for carbon dioxide capture.
We developed and implemented a multiple-input, single-output (MISO) framework comprising two deep neural network (DNN) models.
This approach delineated feasible operational regions (FORs) and highlighted the spectrum of optimal decision-making scenarios.
arXiv Detail & Related papers (2023-12-06T19:43:37Z) - Benchmarking PtO and PnO Methods in the Predictive Combinatorial Optimization Regime [59.27851754647913]
Predictive optimization is the precise modeling of many real-world applications, including energy cost-aware scheduling and budget allocation on advertising.
We develop a modular framework to benchmark 11 existing PtO/PnO methods on 8 problems, including a new industrial dataset for advertising.
Our study shows that PnO approaches are better than PtO on 7 out of 8 benchmarks, but there is no silver bullet found for the specific design choices of PnO.
arXiv Detail & Related papers (2023-11-13T13:19:34Z) - Model-based Causal Bayesian Optimization [74.78486244786083]
We introduce the first algorithm for Causal Bayesian Optimization with Multiplicative Weights (CBO-MW)
We derive regret bounds for CBO-MW that naturally depend on graph-related quantities.
Our experiments include a realistic demonstration of how CBO-MW can be used to learn users' demand patterns in a shared mobility system.
arXiv Detail & Related papers (2023-07-31T13:02:36Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Adaptive Online Optimization with Predictions: Static and Dynamic
Environments [5.553963083111226]
We propose new step-size rules and OCO algorithms that exploit gradient predictions, function predictions and dynamics.
The proposed algorithms enjoy static and dynamic regret bounds in terms of the dynamics of the reference action sequence.
We present results for both convex and strongly convex costs.
arXiv Detail & Related papers (2022-05-01T11:03:33Z) - Lessons from AlphaZero for Optimal, Model Predictive, and Adaptive
Control [0.0]
We show that the principal AlphaZero/TDGammon ideas of approximation in value space and rollout apply very broadly to deterministic and optimal control problems.
These ideas can be effectively integrated with other important methodologies such as model control, adaptive control, decentralized control, and neural network-based value and policy approximations.
arXiv Detail & Related papers (2021-08-20T19:17:35Z) - Iterative Amortized Policy Optimization [147.63129234446197]
Policy networks are a central feature of deep reinforcement learning (RL) algorithms for continuous control.
From the variational inference perspective, policy networks are a form of textitamortized optimization, optimizing network parameters rather than the policy distributions directly.
We demonstrate that iterative amortized policy optimization, yields performance improvements over direct amortization on benchmark continuous control tasks.
arXiv Detail & Related papers (2020-10-20T23:25:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.