Streamlining Forest Wildfire Surveillance: AI-Enhanced UAVs Utilizing the FLAME Aerial Video Dataset for Lightweight and Efficient Monitoring
- URL: http://arxiv.org/abs/2409.00510v1
- Date: Sat, 31 Aug 2024 17:26:53 GMT
- Title: Streamlining Forest Wildfire Surveillance: AI-Enhanced UAVs Utilizing the FLAME Aerial Video Dataset for Lightweight and Efficient Monitoring
- Authors: Lemeng Zhao, Junjie Hu, Jianchao Bi, Yanbing Bai, Erick Mas, Shunichi Koshimura,
- Abstract summary: This study recognizes the imperative for real-time data processing in disaster response scenarios and introduces a lightweight and efficient approach for aerial video understanding.
Our methodology identifies redundant portions within the video through policy networks and eliminates this excess information using frame compression techniques.
Compared to the baseline, our approach reduces computation costs by more than 13 times while boosting accuracy by 3$%$.
- Score: 4.303063757163241
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, unmanned aerial vehicles (UAVs) have played an increasingly crucial role in supporting disaster emergency response efforts by analyzing aerial images. While current deep-learning models focus on improving accuracy, they often overlook the limited computing resources of UAVs. This study recognizes the imperative for real-time data processing in disaster response scenarios and introduces a lightweight and efficient approach for aerial video understanding. Our methodology identifies redundant portions within the video through policy networks and eliminates this excess information using frame compression techniques. Additionally, we introduced the concept of a `station point,' which leverages future information in the sequential policy network, thereby enhancing accuracy. To validate our method, we employed the wildfire FLAME dataset. Compared to the baseline, our approach reduces computation costs by more than 13 times while boosting accuracy by 3$\%$. Moreover, our method can intelligently select salient frames from the video, refining the dataset. This feature enables sophisticated models to be effectively trained on a smaller dataset, significantly reducing the time spent during the training process.
Related papers
- SOAR: Self-supervision Optimized UAV Action Recognition with Efficient Object-Aware Pretraining [65.9024395309316]
We introduce a novel Self-supervised pretraining algorithm for aerial footage captured by Unmanned Aerial Vehicles (UAVs)
We incorporate human object knowledge throughout the pretraining process to enhance UAV video pretraining efficiency and downstream action recognition performance.
arXiv Detail & Related papers (2024-09-26T21:15:22Z) - Automatic UAV-based Airport Pavement Inspection Using Mixed Real and
Virtual Scenarios [3.0874677990361246]
We propose a vision-based approach to automatically identify pavement distress using images captured by UAVs.
The proposed method is based on Deep Learning (DL) to segment defects in the image.
We demonstrate that the use of a mixed dataset composed of synthetic and real training images yields better results when testing the training models in real application scenarios.
arXiv Detail & Related papers (2024-01-11T16:30:07Z) - Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
We describe an approach for supervising deep networks that are based on CycleGAN.
We introduce new losses for training CycleGAN that lead to more effective training, resulting in high-quality reconstructions.
We demonstrate that the proposed method can be effectively applied to different restoration tasks like de-raining, de-hazing and de-snowing.
arXiv Detail & Related papers (2022-04-23T01:30:47Z) - Revisiting Point Cloud Simplification: A Learnable Feature Preserving
Approach [57.67932970472768]
Mesh and Point Cloud simplification methods aim to reduce the complexity of 3D models while retaining visual quality and relevant salient features.
We propose a fast point cloud simplification method by learning to sample salient points.
The proposed method relies on a graph neural network architecture trained to select an arbitrary, user-defined, number of points from the input space and to re-arrange their positions so as to minimize the visual perception error.
arXiv Detail & Related papers (2021-09-30T10:23:55Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - EmergencyNet: Efficient Aerial Image Classification for Drone-Based
Emergency Monitoring Using Atrous Convolutional Feature Fusion [8.634988828030245]
This article focuses on the efficient aerial image classification from on-board a UAV for emergency response/monitoring applications.
A dedicated Aerial Image Database for Emergency Response applications is introduced and a comparative analysis of existing approaches is performed.
A lightweight convolutional neural network architecture is proposed, referred to as EmergencyNet, based on atrous convolutions to process multiresolution features.
arXiv Detail & Related papers (2021-04-28T20:24:10Z) - Offloading Optimization in Edge Computing for Deep Learning Enabled
Target Tracking by Internet-of-UAVs [22.143742665920573]
Unmanned aerial vehicles (UAVs) have been extensively used in providing intelligence such as target tracking.
A pre-trained convolutional neural network (CNN) is deployed at the UAV to identify a target from the captured video frames.
This kind of visual target tracking demands a lot of computational resources due to the desired high inference accuracy and stringent delay requirement.
This motivates us to consider offloading this type of deep learning (DL) tasks to a mobile edge computing (MEC) server.
arXiv Detail & Related papers (2020-08-18T16:00:36Z) - Auto-Rectify Network for Unsupervised Indoor Depth Estimation [119.82412041164372]
We establish that the complex ego-motions exhibited in handheld settings are a critical obstacle for learning depth.
We propose a data pre-processing method that rectifies training images by removing their relative rotations for effective learning.
Our results outperform the previous unsupervised SOTA method by a large margin on the challenging NYUv2 dataset.
arXiv Detail & Related papers (2020-06-04T08:59:17Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.