Offloading Optimization in Edge Computing for Deep Learning Enabled
Target Tracking by Internet-of-UAVs
- URL: http://arxiv.org/abs/2008.08001v1
- Date: Tue, 18 Aug 2020 16:00:36 GMT
- Title: Offloading Optimization in Edge Computing for Deep Learning Enabled
Target Tracking by Internet-of-UAVs
- Authors: Bo Yang, Xuelin Cao, Chau Yuen, Lijun Qian
- Abstract summary: Unmanned aerial vehicles (UAVs) have been extensively used in providing intelligence such as target tracking.
A pre-trained convolutional neural network (CNN) is deployed at the UAV to identify a target from the captured video frames.
This kind of visual target tracking demands a lot of computational resources due to the desired high inference accuracy and stringent delay requirement.
This motivates us to consider offloading this type of deep learning (DL) tasks to a mobile edge computing (MEC) server.
- Score: 22.143742665920573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The empowering unmanned aerial vehicles (UAVs) have been extensively used in
providing intelligence such as target tracking. In our field experiments, a
pre-trained convolutional neural network (CNN) is deployed at the UAV to
identify a target (a vehicle) from the captured video frames and enable the UAV
to keep tracking. However, this kind of visual target tracking demands a lot of
computational resources due to the desired high inference accuracy and
stringent delay requirement. This motivates us to consider offloading this type
of deep learning (DL) tasks to a mobile edge computing (MEC) server due to
limited computational resource and energy budget of the UAV, and further
improve the inference accuracy. Specifically, we propose a novel hierarchical
DL tasks distribution framework, where the UAV is embedded with lower layers of
the pre-trained CNN model, while the MEC server with rich computing resources
will handle the higher layers of the CNN model. An optimization problem is
formulated to minimize the weighted-sum cost including the tracking delay and
energy consumption introduced by communication and computing of the UAVs, while
taking into account the quality of data (e.g., video frames) input to the DL
model and the inference errors. Analytical results are obtained and insights
are provided to understand the tradeoff between the weighted-sum cost and
inference error rate in the proposed framework. Numerical results demonstrate
the effectiveness of the proposed offloading framework.
Related papers
- DNN Task Assignment in UAV Networks: A Generative AI Enhanced Multi-Agent Reinforcement Learning Approach [16.139481340656552]
This paper presents a joint approach that combines multiple-agent reinforcement learning (MARL) and generative diffusion models (GDM)
In the second stage, we introduce a novel DNN task assignment algorithm, termed GDM-MADDPG, which utilizes the reverse denoising process of GDM to replace the actor network in multi-agent deep deterministic policy gradient (MADDPG)
Simulation results indicate that our algorithm performs favorably compared to benchmarks in terms of path planning, Age of Information (AoI), energy consumption, and task load balancing.
arXiv Detail & Related papers (2024-11-13T02:41:02Z) - Streamlining Forest Wildfire Surveillance: AI-Enhanced UAVs Utilizing the FLAME Aerial Video Dataset for Lightweight and Efficient Monitoring [4.303063757163241]
This study recognizes the imperative for real-time data processing in disaster response scenarios and introduces a lightweight and efficient approach for aerial video understanding.
Our methodology identifies redundant portions within the video through policy networks and eliminates this excess information using frame compression techniques.
Compared to the baseline, our approach reduces computation costs by more than 13 times while boosting accuracy by 3$%$.
arXiv Detail & Related papers (2024-08-31T17:26:53Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
arXiv Detail & Related papers (2023-06-05T16:01:33Z) - Deep Reinforcement Learning for Trajectory Path Planning and Distributed
Inference in Resource-Constrained UAV Swarms [6.649753747542209]
This work aims to design a model for distributed collaborative inference requests and path planning in a UAV swarm.
The formulated problem is NP-hard so finding the optimal solution is quite complex.
We conduct extensive simulations and compare our results to the-state-of-the-art studies demonstrating that our model outperforms the competing models.
arXiv Detail & Related papers (2022-12-21T17:16:42Z) - Semantic Communication Enabling Robust Edge Intelligence for
Time-Critical IoT Applications [87.05763097471487]
This paper aims to design robust Edge Intelligence using semantic communication for time-critical IoT applications.
We analyze the effect of image DCT coefficients on inference accuracy and propose the channel-agnostic effectiveness encoding for offloading.
arXiv Detail & Related papers (2022-11-24T20:13:17Z) - Multimodal Adaptive Distillation for Leveraging Unimodal Encoders for
Vision-Language Tasks [118.49566068398642]
Cross-modal encoders for vision-language (VL) tasks are often pretrained with carefully curated vision-language datasets.
Unimodal encoders are pretrained with simpler annotations that are less cost-prohibitive, achieving scales of hundreds of millions to billions.
We propose Multimodal Adaptive Distillation (MAD), which adaptively distills useful knowledge from pretrained encoders to cross-modal VL encoders.
arXiv Detail & Related papers (2022-04-22T04:41:04Z) - EffCNet: An Efficient CondenseNet for Image Classification on NXP
BlueBox [0.0]
Edge devices offer limited processing power due to their inexpensive hardware, and limited cooling and computational resources.
We propose a novel deep convolutional neural network architecture called EffCNet for edge devices.
arXiv Detail & Related papers (2021-11-28T21:32:31Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Distributed CNN Inference on Resource-Constrained UAVs for Surveillance
Systems: Design and Optimization [43.9909417652678]
Unmanned Aerial Vehicles (UAVs) have attracted great interest in the last few years owing to their ability to cover large areas and access difficult and hazardous target zones.
Thanks to the advancements in computer vision and machine learning, UAVs are being adopted for a broad range of solutions and applications.
Deep Neural Networks (DNNs) are progressing toward deeper and complex models that prevent them from being executed on-board.
arXiv Detail & Related papers (2021-05-23T20:19:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.