論文の概要: Testing and Evaluation of Large Language Models: Correctness, Non-Toxicity, and Fairness
- arxiv url: http://arxiv.org/abs/2409.00551v1
- Date: Sat, 31 Aug 2024 22:21:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 13:55:44.384087
- Title: Testing and Evaluation of Large Language Models: Correctness, Non-Toxicity, and Fairness
- Title(参考訳): 大規模言語モデルの検証と評価:正確性、非毒性、公正性
- Authors: Wenxuan Wang,
- Abstract要約: 大規模言語モデル(LLM)は、過去数年間、人々の仕事や日常生活に急速に浸透してきた。
この論文は、ソフトウェアテストと自然言語処理の両方の観点から、LSMの正当性、非毒性、公平性に焦点を当てている。
- 参考スコア(独自算出の注目度): 30.632260870411177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs), such as ChatGPT, have rapidly penetrated into people's work and daily lives over the past few years, due to their extraordinary conversational skills and intelligence. ChatGPT has become the fastest-growing software in terms of user numbers in human history and become an important foundational model for the next generation of artificial intelligence applications. However, the generations of LLMs are not entirely reliable, often producing content with factual errors, biases, and toxicity. Given their vast number of users and wide range of application scenarios, these unreliable responses can lead to many serious negative impacts. This thesis introduces the exploratory works in the field of language model reliability during the PhD study, focusing on the correctness, non-toxicity, and fairness of LLMs from both software testing and natural language processing perspectives. First, to measure the correctness of LLMs, we introduce two testing frameworks, FactChecker and LogicAsker, to evaluate factual knowledge and logical reasoning accuracy, respectively. Second, for the non-toxicity of LLMs, we introduce two works for red-teaming LLMs. Third, to evaluate the fairness of LLMs, we introduce two evaluation frameworks, BiasAsker and XCulturalBench, to measure the social bias and cultural bias of LLMs, respectively.
- Abstract(参考訳): ChatGPTのような大規模言語モデル(LLM)は、この数年間で人々の仕事や日常生活に急速に浸透してきた。
ChatGPTは、人類史上最も急速に成長しているソフトウェアであり、次世代の人工知能アプリケーションにとって重要な基礎モデルとなっている。
しかし、LLMの世代は完全に信頼できないため、しばしば事実の誤り、偏見、毒性のあるコンテンツを生み出す。
膨大な数のユーザと広範囲のアプリケーションシナリオを考えると、これらの信頼性の低いレスポンスは多くの重大なネガティブな影響をもたらします。
この論文は、PhD研究における言語モデル信頼性の分野における探索的な研究を紹介し、ソフトウェアテストと自然言語処理の両方の観点から、LLMの正当性、非毒性、公平性に焦点を当てている。
まず, LLMの正確性を評価するために, FactChecker と LogicAsker という2つのテストフレームワークを導入する。
第2に, LLMの非毒性については, レッドピーリング LLM の2つの研究を紹介する。
第3に,LLMの公平性を評価するために,LLMの社会的バイアスと文化的バイアスを測定するために,BiasAskerとXCulturalBenchの2つの評価枠組みを導入する。
関連論文リスト
- FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - FFT: Towards Harmlessness Evaluation and Analysis for LLMs with
Factuality, Fairness, Toxicity [21.539026782010573]
生成的人工知能の普及により、AI生成テキストによる潜在的な害に対する懸念が高まっている。
これまでの研究者は、生成言語モデルの無害性を評価するために多くの努力を払ってきた。
論文 参考訳(メタデータ) (2023-11-30T14:18:47Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
不確実性推定(UE)手法は、大規模言語モデル(LLM)の安全性、責任性、効果的な利用のための1つの経路である。
テキスト生成タスクにおけるLLMの最先端UEメソッドのバッテリを実装したフレームワークであるLM-PolygraphをPythonで統一したプログラムインタフェースで導入する。
研究者によるUEテクニックの一貫した評価のための拡張可能なベンチマークと、信頼スコア付き標準チャットダイアログを強化するデモWebアプリケーションを導入している。
論文 参考訳(メタデータ) (2023-11-13T15:08:59Z) - Are Large Language Models Reliable Judges? A Study on the Factuality
Evaluation Capabilities of LLMs [8.526956860672698]
大きな言語モデル(LLM)は、その顕著な能力のために注目を集めている。
本研究では,テキスト生成モデルにより生成された要約における事実整合性の信頼性評価としてのLCMの可能性について検討する。
論文 参考訳(メタデータ) (2023-11-01T17:42:45Z) - FELM: Benchmarking Factuality Evaluation of Large Language Models [40.78878196872095]
本稿では,Felmと呼ばれる大規模言語モデルのファクチュアリティ評価のためのベンチマークを紹介する。
我々は,大規模言語モデルから生成された応答を収集し,微粒な方法で事実ラベルを注釈付けする。
その結果,検索は事実性評価に役立つが,現在のLCMは事実の誤りを忠実に検出するには不十分であることがわかった。
論文 参考訳(メタデータ) (2023-10-01T17:37:31Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Large Language Models are Not Yet Human-Level Evaluators for Abstractive
Summarization [66.08074487429477]
抽象的な要約のための自動評価器として,大規模言語モデル(LLM)の安定性と信頼性について検討する。
また、ChatGPTとGPT-4は、一般的に使われている自動測定値よりも優れていますが、人間の代替品として準備ができていません。
論文 参考訳(メタデータ) (2023-05-22T14:58:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。