論文の概要: CRUD-Capable Mobile Apps with R and shinyMobile: a Case Study in Rapid Prototyping
- arxiv url: http://arxiv.org/abs/2409.00582v1
- Date: Sun, 1 Sep 2024 02:27:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 13:43:27.580052
- Title: CRUD-Capable Mobile Apps with R and shinyMobile: a Case Study in Rapid Prototyping
- Title(参考訳): RとShinyMobileを使ったCRUD対応モバイルアプリ:ラピッドプロトタイピングのケーススタディ
- Authors: Nathan Henry,
- Abstract要約: Hardenは、主にRで開発された生態的モメンタリーアセスメント(EMA)のためのプログレッシブWebアプリケーション(PWA)である。
shinyMobileパッケージを活用して、リアクティブなモバイルユーザインターフェース(UI)を作成する。
本稿では,Harden アプリケーション作成に使用される方法論の概要と,アプリケーション開発における shinyMobile アプローチのメリットと限界について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: "Harden" is a Progressive Web Application (PWA) for Ecological Momentary Assessment (EMA) developed mostly in R, which runs on all platforms with an internet connection, including iOS and Android. It leverages the shinyMobile package for creating a reactive mobile user interface (UI), PostgreSQL for the database backend, and Google Cloud Run for scalable hosting in the cloud, with serverless execution. Using this technology stack, it was possible to rapidly prototype a fully CRUD-capable (Create, Read, Update, Delete) mobile app, with persistent user data across sessions, interactive graphs, and real-time statistical calculation. This framework is compared with current alternative frameworks for creating data science apps; it is argued that the shinyMobile package provides one of the most efficient methods for rapid prototyping and creation of statistical mobile apps that require advanced graphing capabilities. This paper outlines the methodology used to create the Harden application, and discusses the advantages and limitations of the shinyMobile approach to app development. It is hoped that this information will encourage other programmers versed in R to consider developing mobile apps with this framework.
- Abstract(参考訳): Harden"は、主にRで開発されたEcological Momentary Assessment(EMA)のためのプログレッシブWebアプリケーション(PWA)である。
このパッケージは、リアクティブなモバイルユーザインターフェース(UI)の作成、データベースバックエンド用のPostgreSQL、クラウド上のスケーラブルなホスティングのためのGoogle Cloud Run、サーバレス実行のためのGoogle Cloud Runを利用する。
このテクノロジスタックを使用することで、セッション間の永続的なユーザデータ、インタラクティブグラフ、リアルタイム統計計算を備えた、CRUD対応(Create, Read, Update, Delete)モバイルアプリの迅速なプロトタイプが可能になる。
shinyMobileパッケージは、高度なグラフ処理機能を必要とする統計モバイルアプリを高速にプロトタイピングおよび作成するための最も効率的な方法の1つを提供する、と論じられている。
本稿では,Harden アプリケーション作成に使用される方法論の概要と,アプリケーション開発における shinyMobile アプローチのメリットと限界について述べる。
この情報により、Rに精通している他のプログラマが、このフレームワークでモバイルアプリを開発することを検討できるようになることが期待されている。
関連論文リスト
- Foundations and Recent Trends in Multimodal Mobile Agents: A Survey [57.677161006710065]
モバイルエージェントは、複雑で動的なモバイル環境におけるタスクの自動化に不可欠である。
近年の進歩により、リアルタイム適応性とマルチモーダルインタラクションが向上している。
これらの進歩は、プロンプトベースの方法とトレーニングベースの方法の2つの主要なアプローチに分類する。
論文 参考訳(メタデータ) (2024-11-04T11:50:58Z) - MobileAgentBench: An Efficient and User-Friendly Benchmark for Mobile LLM Agents [7.4568642040547894]
大規模言語モデル(LLM)ベースのモバイルエージェントは、携帯電話のグラフィカルユーザインタフェース(GUI)と直接対話できることから、ますます人気が高まっている。
学術部門と産業部門の両方で有望な見通しにもかかわらず、既存のモバイルエージェントのパフォーマンスをベンチマークすることに注力する研究はほとんどない。
我々は、広範囲な手動テストの負担を軽減するために、効率的でユーザフレンドリなベンチマークMobileAgentBenchを提案する。
論文 参考訳(メタデータ) (2024-06-12T13:14:50Z) - Skeet: Towards a Lightweight Serverless Framework Supporting Modern AI-Driven App Development [0.0]
Skeetは最近、初期評価とともに一般向けにリリースされた。
Skeetは、アーキテクチャの現在のトレンドを反映したアプリ構造と、AI内部に関する最小限の知識を持つ開発者が、そのような技術をアプリに簡単に組み込んでデプロイできるツールスイートを提供する。
論文 参考訳(メタデータ) (2024-05-10T01:00:20Z) - Aptly: Making Mobile Apps from Natural Language [0.7852714805965528]
Aptlyは、自然言語によるモバイルアプリ開発を可能にするMIT App Inventorプラットフォームの拡張機能である。
本稿は,Aptlyの実践性とユーザエクスペリエンスを考察した,高校生を対象としたパイロット実装に関する考察から結論を得たものである。
論文 参考訳(メタデータ) (2024-04-30T22:33:34Z) - CLAID: Closing the Loop on AI & Data Collection -- A Cross-Platform
Transparent Computing Middleware Framework for Smart Edge-Cloud and Digital
Biomarker Applications [2.953239144917]
CLAIDは,Android,iOS,WearOS,Linux,Windowsと互換性のある透過型コンピューティングをベースとしたオープンソースフレームワークである。
各種センサからのデータ収集と機械学習モデルの展開のためのモジュールを提供する。
本稿では,デプロイされた機械学習モデルを検証するための新しい手法"ML-Model in the Loop"を提案する。
論文 参考訳(メタデータ) (2023-10-09T11:56:51Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
近年、流体力学計算を容易にする機械学習(ML)の多くの成功例が報告されている。
シミュレーションが大きくなるにつれて、従来のオフライン学習のための新しいトレーニングデータセットの生成は、I/Oとストレージのボトルネックを生み出します。
この作業は、この結合を単純化し、異種クラスタでのその場トレーニングと推論を可能にするソリューションを提供する。
論文 参考訳(メタデータ) (2023-06-22T14:07:54Z) - FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in
Realistic Healthcare Settings [51.09574369310246]
Federated Learning(FL)は、センシティブなデータを保持している複数のクライアントが協力して機械学習モデルをトレーニングできる新しいアプローチである。
本稿では,医療分野に重点を置くクロスサイロ・データセット・スイートFLambyを提案し,クロスサイロ・FLの理論と実践のギャップを埋める。
私たちのフレキシブルでモジュラーなスイートによって、研究者は簡単にデータセットをダウンロードし、結果を再現し、研究のためにさまざまなコンポーネントを再利用することができます。
論文 参考訳(メタデータ) (2022-10-10T12:17:30Z) - YMIR: A Rapid Data-centric Development Platform for Vision Applications [82.67319997259622]
本稿では,コンピュータビジョンアプリケーションの開発を迅速化するオープンソースプラットフォームについて紹介する。
このプラットフォームは、効率的なデータ開発を機械学習開発プロセスの中心に置く。
論文 参考訳(メタデータ) (2021-11-19T05:02:55Z) - Reproducible Performance Optimization of Complex Applications on the
Edge-to-Cloud Continuum [55.6313942302582]
エッジ・ツー・クラウド・コンティニュム上でのリアルタイムアプリケーションの最適化を支援する手法を提案する。
提案手法は, 制御されたテストベッド環境において, その動作を理解するための厳密な構成解析に頼っている。
当社の方法論はEdge-to-Cloud Continuumの他のアプリケーションに一般化することができる。
論文 参考訳(メタデータ) (2021-08-04T07:35:14Z) - Mobile Sensing for Multipurpose Applications in Transportation [0.0]
国務省は、交通問題をタイムリーに分析・解決するために一貫したデータを集めるのに苦労している。
スマートフォンに内蔵されたセンサーの最近の進歩は、より手頃なデータ収集方法をもたらした。
開発されたアプリは、ミズーリ州コロンビアとミズーリ州カンザスシティを結ぶi70Wハイウェイのデータを収集して評価された。
論文 参考訳(メタデータ) (2021-06-20T17:56:12Z) - Emerging App Issue Identification via Online Joint Sentiment-Topic
Tracing [66.57888248681303]
本稿では,MERITという新しい問題検出手法を提案する。
AOBSTモデルに基づいて、1つのアプリバージョンに対するユーザレビューに否定的に反映されたトピックを推測する。
Google PlayやAppleのApp Storeで人気のアプリに対する実験は、MERITの有効性を実証している。
論文 参考訳(メタデータ) (2020-08-23T06:34:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。