Automatic Pseudo-Harmful Prompt Generation for Evaluating False Refusals in Large Language Models
- URL: http://arxiv.org/abs/2409.00598v1
- Date: Sun, 1 Sep 2024 03:25:59 GMT
- Title: Automatic Pseudo-Harmful Prompt Generation for Evaluating False Refusals in Large Language Models
- Authors: Bang An, Sicheng Zhu, Ruiyi Zhang, Michael-Andrei Panaitescu-Liess, Yuancheng Xu, Furong Huang,
- Abstract summary: Safety-aligned large language models (LLMs) sometimes falsely refuse pseudo-harmful prompts, like "how to kill a mosquito"
Frequent false refusals not only frustrate users but also provoke a public backlash against values alignment seeks to protect.
We propose the first method to auto-generate diverse, content-controlled, and model-dependent pseudo-harmful prompts.
- Score: 41.00711032805581
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Safety-aligned large language models (LLMs) sometimes falsely refuse pseudo-harmful prompts, like "how to kill a mosquito," which are actually harmless. Frequent false refusals not only frustrate users but also provoke a public backlash against the very values alignment seeks to protect. In this paper, we propose the first method to auto-generate diverse, content-controlled, and model-dependent pseudo-harmful prompts. Using this method, we construct an evaluation dataset called PHTest, which is ten times larger than existing datasets, covers more false refusal patterns, and separately labels controversial prompts. We evaluate 20 LLMs on PHTest, uncovering new insights due to its scale and labeling. Our findings reveal a trade-off between minimizing false refusals and improving safety against jailbreak attacks. Moreover, we show that many jailbreak defenses significantly increase the false refusal rates, thereby undermining usability. Our method and dataset can help developers evaluate and fine-tune safer and more usable LLMs. Our code and dataset are available at https://github.com/umd-huang-lab/FalseRefusal
Related papers
- Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.
We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.
Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - DROJ: A Prompt-Driven Attack against Large Language Models [0.0]
Large Language Models (LLMs) have demonstrated exceptional capabilities across various natural language processing tasks.
Despite massive alignment efforts, LLMs remain susceptible to adversarial jailbreak attacks.
We introduce a novel approach, Directed Rrepresentation Optimization Jailbreak (DROJ)
arXiv Detail & Related papers (2024-11-14T01:48:08Z) - A Realistic Threat Model for Large Language Model Jailbreaks [87.64278063236847]
In this work, we propose a unified threat model for the principled comparison of jailbreak attacks.
Our threat model combines constraints in perplexity, measuring how far a jailbreak deviates from natural text.
We adapt popular attacks to this new, realistic threat model, with which we, for the first time, benchmark these attacks on equal footing.
arXiv Detail & Related papers (2024-10-21T17:27:01Z) - Don't Say No: Jailbreaking LLM by Suppressing Refusal [13.666830169722576]
In this study, we first uncover the reason why vanilla target loss is not optimal, then we explore and enhance the loss objective and introduce the DSN (Don't Say No) attack.
The existing evaluation such as refusal keyword matching reveals numerous false positive and false negative instances.
To overcome this challenge, we propose an Ensemble Evaluation pipeline that novelly incorporates Natural Language Inference (NLI) contradiction assessment and two external LLM evaluators.
arXiv Detail & Related papers (2024-04-25T07:15:23Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
Large language models (LLMs) are vulnerable to jailbreak attacks.
Existing jailbreaking methods are computationally costly.
We propose the weak-to-strong jailbreaking attack.
arXiv Detail & Related papers (2024-01-30T18:48:37Z) - Fake Alignment: Are LLMs Really Aligned Well? [91.26543768665778]
This study investigates the substantial discrepancy in performance between multiple-choice questions and open-ended questions.
Inspired by research on jailbreak attack patterns, we argue this is caused by mismatched generalization.
arXiv Detail & Related papers (2023-11-10T08:01:23Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
We propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on large language models (LLMs)
Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs.
arXiv Detail & Related papers (2023-10-05T17:01:53Z) - Detecting Language Model Attacks with Perplexity [0.0]
A novel hack involving Large Language Models (LLMs) has emerged, exploiting adversarial suffixes to deceive models into generating perilous responses.
A Light-GBM trained on perplexity and token length resolved the false positives and correctly detected most adversarial attacks in the test set.
arXiv Detail & Related papers (2023-08-27T15:20:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.