Don't Say No: Jailbreaking LLM by Suppressing Refusal
- URL: http://arxiv.org/abs/2404.16369v2
- Date: Sat, 12 Oct 2024 06:57:09 GMT
- Title: Don't Say No: Jailbreaking LLM by Suppressing Refusal
- Authors: Yukai Zhou, Zhijie Huang, Feiyang Lu, Zhan Qin, Wenjie Wang,
- Abstract summary: In this study, we first uncover the reason why vanilla target loss is not optimal, then we explore and enhance the loss objective and introduce the DSN (Don't Say No) attack.
The existing evaluation such as refusal keyword matching reveals numerous false positive and false negative instances.
To overcome this challenge, we propose an Ensemble Evaluation pipeline that novelly incorporates Natural Language Inference (NLI) contradiction assessment and two external LLM evaluators.
- Score: 13.666830169722576
- License:
- Abstract: Ensuring the safety alignment of Large Language Models (LLMs) is crucial to generating responses consistent with human values. Despite their ability to recognize and avoid harmful queries, LLMs are vulnerable to jailbreaking attacks, where carefully crafted prompts seduce them to produce toxic content. One category of jailbreak attacks is reformulating the task as an optimization by eliciting the LLM to generate affirmative responses. However, such optimization objective has its own limitations, such as the restriction on the predefined objectionable behaviors, leading to suboptimal attack performance. In this study, we first uncover the reason why vanilla target loss is not optimal, then we explore and enhance the loss objective and introduce the DSN (Don't Say No) attack, which achieves successful attack by suppressing refusal. Another challenge in studying jailbreak attacks is the evaluation, as it is difficult to directly and accurately assess the harmfulness of the responses. The existing evaluation such as refusal keyword matching reveals numerous false positive and false negative instances. To overcome this challenge, we propose an Ensemble Evaluation pipeline that novelly incorporates Natural Language Inference (NLI) contradiction assessment and two external LLM evaluators. Extensive experiments demonstrate the potential of the DSN and effectiveness of Ensemble Evaluation compared to baseline methods.
Related papers
- The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense [56.32083100401117]
We investigate why Vision Large Language Models (VLLMs) are prone to jailbreak attacks.
We then make a key observation: existing defense mechanisms suffer from an textbfover-prudence problem.
We find that the two representative evaluation methods for jailbreak often exhibit chance agreement.
arXiv Detail & Related papers (2024-11-13T07:57:19Z) - A Realistic Threat Model for Large Language Model Jailbreaks [87.64278063236847]
In this work, we propose a unified threat model for the principled comparison of jailbreak attacks.
Our threat model combines constraints in perplexity, measuring how far a jailbreak deviates from natural text.
We adapt popular attacks to this new, realistic threat model, with which we, for the first time, benchmark these attacks on equal footing.
arXiv Detail & Related papers (2024-10-21T17:27:01Z) - Root Defence Strategies: Ensuring Safety of LLM at the Decoding Level [10.658844160259104]
Large language models (LLMs) have demonstrated immense utility across various industries.
As LLMs advance, the risk of harmful outputs increases due to incorrect or malicious instruction prompts.
This paper examines the LLMs' capability to recognize harmful outputs, revealing and quantifying their proficiency in assessing the danger of previous tokens.
arXiv Detail & Related papers (2024-10-09T12:09:30Z) - Detecting AI Flaws: Target-Driven Attacks on Internal Faults in Language Models [27.397408870544453]
Large Language Models (LLMs) have become a focal point in the rapidly evolving field of artificial intelligence.
A critical concern is the presence of toxic content within the pre-training corpus of these models, which can lead to the generation of inappropriate outputs.
This paper proposes a target-driven attack paradigm that focuses on directly eliciting the target response instead of optimizing the prompts.
arXiv Detail & Related papers (2024-08-27T08:12:08Z) - Characterizing and Evaluating the Reliability of LLMs against Jailbreak Attacks [23.782566331783134]
We focus on 10 cutting-edge jailbreak strategies across three categories, 1525 questions from 61 specific harmful categories, and 13 popular LLMs.
We adopt multi-dimensional metrics such as Attack Success Rate (ASR), Toxicity Score, Fluency, Token Length, and Grammatical Errors to thoroughly assess the LLMs' outputs under jailbreak.
We explore the relationships among the models, attack strategies, and types of harmful content, as well as the correlations between the evaluation metrics, which proves the validity of our multifaceted evaluation framework.
arXiv Detail & Related papers (2024-08-18T01:58:03Z) - Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes [61.916827858666906]
Large Language Models (LLMs) are becoming a prominent generative AI tool, where the user enters a query and the LLM generates an answer.
To reduce harm and misuse, efforts have been made to align these LLMs to human values using advanced training techniques such as Reinforcement Learning from Human Feedback.
Recent studies have highlighted the vulnerability of LLMs to adversarial jailbreak attempts aiming at subverting the embedded safety guardrails.
This paper proposes a method called Gradient Cuff to detect jailbreak attempts.
arXiv Detail & Related papers (2024-03-01T03:29:54Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
We propose an Adversarial Suffix Embedding Translation Framework (ASETF) to transform continuous adversarial suffix embeddings into coherent and understandable text.
Our method significantly reduces the computation time of adversarial suffixes and achieves a much better attack success rate to existing techniques.
arXiv Detail & Related papers (2024-02-25T06:46:27Z) - Is LLM-as-a-Judge Robust? Investigating Universal Adversarial Attacks on Zero-shot LLM Assessment [8.948475969696075]
Large Language Models (LLMs) are powerful zero-shot assessors used in real-world situations such as assessing written exams and benchmarking systems.
We show that short universal adversarial phrases can be deceived to judge LLMs to predict inflated scores.
It is found that judge-LLMs are significantly more susceptible to these adversarial attacks when used for absolute scoring.
arXiv Detail & Related papers (2024-02-21T18:55:20Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on
Large Language Models [82.98081731588717]
Integration of large language models with external content exposes applications to indirect prompt injection attacks.
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to evaluate the risk of such attacks.
We develop two black-box methods based on prompt learning and a white-box defense method based on fine-tuning with adversarial training.
arXiv Detail & Related papers (2023-12-21T01:08:39Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
We propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on large language models (LLMs)
Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs.
arXiv Detail & Related papers (2023-10-05T17:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.