Knowledge-data fusion oriented traffic state estimation: A stochastic physics-informed deep learning approach
- URL: http://arxiv.org/abs/2409.00644v1
- Date: Sun, 1 Sep 2024 07:34:40 GMT
- Title: Knowledge-data fusion oriented traffic state estimation: A stochastic physics-informed deep learning approach
- Authors: Ting Wang, Ye Li, Rongjun Cheng, Guojian Zou, Takao Dantsujic, Dong Ngoduy,
- Abstract summary: This study proposes physics-informed deep learning (SPIDL) for traffic state estimation.
The main contribution of SPIDL lies in addressing the "overly centralized guidance" caused by the one-to-one speed-density relationship in deterministic models during neural network training.
Experiments on the real-world dataset indicate that proposed SPIDL models achieve accurate traffic state estimation in sparse data scenarios.
- Score: 12.08072226345806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed deep learning (PIDL)-based models have recently garnered remarkable success in traffic state estimation (TSE). However, the prior knowledge used to guide regularization training in current mainstream architectures is based on deterministic physical models. The drawback is that a solely deterministic model fails to capture the universally observed traffic flow dynamic scattering effect, thereby yielding unreliable outcomes for traffic control. This study, for the first time, proposes stochastic physics-informed deep learning (SPIDL) for traffic state estimation. The idea behind such SPIDL is simple and is based on the fact that a stochastic fundamental diagram provides the entire range of possible speeds for any given density with associated probabilities. Specifically, we select percentile-based fundamental diagram and distribution-based fundamental diagram as stochastic physics knowledge, and design corresponding physics-uninformed neural networks for effective fusion, thereby realizing two specific SPIDL models, namely \text{$\alpha$}-SPIDL and \text{$\cal B$}-SPIDL. The main contribution of SPIDL lies in addressing the "overly centralized guidance" caused by the one-to-one speed-density relationship in deterministic models during neural network training, enabling the network to digest more reliable knowledge-based constraints.Experiments on the real-world dataset indicate that proposed SPIDL models achieve accurate traffic state estimation in sparse data scenarios. More importantly, as expected, SPIDL models reproduce well the scattering effect of field observations, demonstrating the effectiveness of fusing stochastic physics model knowledge with deep learning frameworks.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
We propose a physics inspired hybrid attention (PIHA) mechanism and the once-for-all (OFA) evaluation protocol to address the issues.
PIHA leverages the high-level semantics of physical information to activate and guide the feature group aware of local semantics of target.
Our method outperforms other state-of-the-art approaches in 12 test scenarios with same ASC parameters.
arXiv Detail & Related papers (2023-09-27T14:39:41Z) - STDEN: Towards Physics-Guided Neural Networks for Traffic Flow
Prediction [31.49270000605409]
The lack of integration between physical principles and data-driven models is an important reason for limiting the development of this field.
We propose a physics-guided deep learning model named Spatio-Temporal Differential Equation Network (STDEN), which casts the physical mechanism of traffic flow dynamics into a deep neural network framework.
Experiments on three real-world traffic datasets in Beijing show that our model outperforms state-of-the-art baselines by a significant margin.
arXiv Detail & Related papers (2022-09-01T04:58:18Z) - Quantifying Uncertainty In Traffic State Estimation Using Generative
Adversarial Networks [4.737519767218666]
This paper aims to quantify uncertainty in traffic state estimation (TSE) using the generative adversarial network based physics-informed deep learning (PIDL)
Two physics models, the Lighthill-Whitham-Richards (LWR) and the Aw-Rascle-Zhang (ARZ) models, are compared as the physics components for the PhysGAN.
Results show that the ARZ-based PhysGAN achieves a better performance than the LWR-based one.
arXiv Detail & Related papers (2022-06-19T08:10:15Z) - TrafficFlowGAN: Physics-informed Flow based Generative Adversarial
Network for Uncertainty Quantification [4.215251065887861]
We propose TrafficFlowGAN, a physics-informed flow based generative adversarial network (GAN) for uncertainty quantification (UQ) of dynamical systems.
This flow model is trained to maximize the data likelihood and to generate synthetic data that can fool a convolutional discriminator.
To the best of our knowledge, we are the first to propose an integration of flow, GAN and PIDL for the UQ problems.
arXiv Detail & Related papers (2022-06-19T03:35:12Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - A Physics-Informed Deep Learning Paradigm for Traffic State Estimation
and Fundamental Diagram Discovery [3.779860024918729]
This paper contributes an improved paradigm, called physics-informed deep learning with a fundamental diagram learner (PIDL+FDL)
PIDL+FDL integrates ML terms into the model-driven component to learn a functional form of a fundamental diagram (FD), i.e., a mapping from traffic density to flow or velocity.
We demonstrate the use of PIDL+FDL to solve popular first-order and second-order traffic flow models and reconstruct the FD relation.
arXiv Detail & Related papers (2021-06-06T14:54:32Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - A Physics-Informed Deep Learning Paradigm for Car-Following Models [3.093890460224435]
We develop a family of neural network based car-following models informed by physics-based models.
Two types of PIDL-CFM problems are studied, one to predict acceleration only and the other to jointly predict acceleration and discover model parameters.
The results demonstrate the superior performance of neural networks informed by physics over those without.
arXiv Detail & Related papers (2020-12-24T18:04:08Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.