論文の概要: Video-based Analysis Reveals Atypical Social Gaze in People with Autism Spectrum Disorder
- arxiv url: http://arxiv.org/abs/2409.00664v1
- Date: Sun, 1 Sep 2024 08:42:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 13:09:07.828528
- Title: Video-based Analysis Reveals Atypical Social Gaze in People with Autism Spectrum Disorder
- Title(参考訳): 自閉症スペクトラム障害者における非定型的社会意識の分析
- Authors: Xiangxu Yu, Mindi Ruan, Chuanbo Hu, Wenqi Li, Lynn K. Paul, Xin Li, Shuo Wang,
- Abstract要約: 本研究では,ADOS-2 (Autism Diagnostic Observation Schedule, 2nd Edition) のインタビュービデオから,3人称視点データベースを用いた。
被験者および受験者の映像から視線関連特徴を抽出し,処理した。
本研究では、視線エンゲージメント、視線変動、視線密度マップ、視線反転周波数の4つの特徴を定量的に分析した。
- 参考スコア(独自算出の注目度): 13.006406004068117
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we present a quantitative and comprehensive analysis of social gaze in people with autism spectrum disorder (ASD). Diverging from traditional first-person camera perspectives based on eye-tracking technologies, this study utilizes a third-person perspective database from the Autism Diagnostic Observation Schedule, 2nd Edition (ADOS-2) interview videos, encompassing ASD participants and neurotypical individuals as a reference group. Employing computational models, we extracted and processed gaze-related features from the videos of both participants and examiners. The experimental samples were divided into three groups based on the presence of social gaze abnormalities and ASD diagnosis. This study quantitatively analyzed four gaze features: gaze engagement, gaze variance, gaze density map, and gaze diversion frequency. Furthermore, we developed a classifier trained on these features to identify gaze abnormalities in ASD participants. Together, we demonstrated the effectiveness of analyzing social gaze in people with ASD in naturalistic settings, showcasing the potential of third-person video perspectives in enhancing ASD diagnosis through gaze analysis.
- Abstract(参考訳): 本研究では,自閉症スペクトラム障害(ASD)患者の社会的視線を定量的かつ包括的に分析する。
本研究は、視線追跡技術に基づく従来のファーストパーソンカメラの視点から、ADOS-2 (Autism Diagnostic Observation Schedule, 2nd Edition) インタビュービデオからの3人称視点データベースを用いて、ASD参加者と神経型個人を参照グループとして包含する。
計算モデルを用いて,被験者と受験者のビデオから視線関連特徴を抽出し,処理した。
実験では, 社会性視線異常の有無と ASD 診断に基づいて, 3つの群に分けた。
本研究では、視線エンゲージメント、視線変動、視線密度マップ、視線反転周波数の4つの特徴を定量的に分析した。
さらに,ASD参加者の視線異常を識別するために,これらの特徴を訓練した分類器を開発した。
本研究では,自然主義的環境下での社会的な視線分析の有効性を実証し,視線分析によるASD診断の強化における3人称映像視点の可能性を示した。
関連論文リスト
- Hugging Rain Man: A Novel Facial Action Units Dataset for Analyzing Atypical Facial Expressions in Children with Autism Spectrum Disorder [2.3001245059699014]
我々は,ASDと典型的発達(TD)の双方に対して,FACSの専門家が手動でアノテートした顔アクションユニット(AU)を含む,新しいデータセットHugging Rain Manを紹介する。
データセットには、ポーズと自発的な表情の豊富なコレクションが含まれており、合計で約130,000フレーム、22のAU、10のAction Descriptors(AD)、非定型評価が含まれている。
論文 参考訳(メタデータ) (2024-11-21T02:51:52Z) - Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction [9.251838958621684]
そこで本稿では, ASD 児の視線行動を自動的に精度良く解析する手法を提案する。
まず、7つのクラスタリングアルゴリズムを適用して、視線ポイントを自動的にグループ化し、一般的に発達しているASD被験者と比較する。
最後に,これらの特徴を事前知識として用いて,視線行動に基づいて複数の予測機械学習モデルをトレーニングし,ASDの予測と診断を行う。
論文 参考訳(メタデータ) (2024-09-18T06:56:06Z) - Exploring Physiological Responses in Virtual Reality-based Interventions for Autism Spectrum Disorder: A Data-Driven Investigation [0.24876373046660102]
本研究は、ARDと診断された34名を対象に、VR内のマルチプレイヤー深刻なゲーム環境を取り入れた。
また,VRセッションの参加者の覚醒反応を包括的に把握するために,高精度バイオセンサを用いた。
この研究は、仮想シナリオに適応するためにリアルタイムデータを使用することの可能性を示し、パーソナライズされた治療を支援するための有望な道のりを示唆した。
論文 参考訳(メタデータ) (2024-04-10T16:50:07Z) - Hear Me, See Me, Understand Me: Audio-Visual Autism Behavior Recognition [47.550391816383794]
本稿では,音声・視覚自閉症の行動認識の新たな課題について紹介する。
社会的行動認識は、AIによる自閉症スクリーニング研究において、これまで省略されてきた重要な側面である。
データセット、コード、事前トレーニングされたモデルをリリースします。
論文 参考訳(メタデータ) (2024-03-22T22:52:35Z) - Vision-Based Activity Recognition in Children with Autism-Related
Behaviors [15.915410623440874]
臨床医や親が子どもの行動を分析するのに役立つ地域型コンピュータビジョンシステムの効果を実証する。
データは、ビデオ中の対象の子供を検出し、背景雑音の影響を低減することで前処理される。
時間的畳み込みモデルの有効性から,ビデオフレームから動作特徴を抽出できる軽量モデルと従来モデルの両方を提案する。
論文 参考訳(メタデータ) (2022-08-08T15:12:27Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
本研究では,非構造的トピック関連超音波レポート生成のための新しい因子的注意・埋め込みモデル(FAE-Gen)を提案する。
提案したFAE-Genは主に2つのモジュール、すなわちビュー誘導因子の注意とトピック指向因子の埋め込みから構成されており、異なるビューで均質および不均一な形態的特徴を捉えている。
論文 参考訳(メタデータ) (2022-03-12T15:24:03Z) - Leveraging Human Selective Attention for Medical Image Analysis with
Limited Training Data [72.1187887376849]
選択的な注意機構は、注意散らしの存在を無視することで、認知システムがタスク関連視覚的手がかりに焦点を合わせるのに役立つ。
本稿では,医療画像解析タスクにおいて,小さなトレーニングデータを用いたガベージを利用したフレームワークを提案する。
本手法は腫瘍の3次元分割と2次元胸部X線分類において優れた性能を示す。
論文 参考訳(メタデータ) (2021-12-02T07:55:25Z) - Act Like a Radiologist: Towards Reliable Multi-view Correspondence
Reasoning for Mammogram Mass Detection [49.14070210387509]
マンモグラム質量検出のための解剖学的グラフ畳み込みネットワーク(AGN)を提案する。
AGNはマンモグラムの質量検出用に調整されており、既存の検出手法を多視点推論能力で実現している。
2つの標準ベンチマークの実験によると、AGNは最先端のパフォーマンスを大幅に上回っている。
論文 参考訳(メタデータ) (2021-05-21T06:48:34Z) - Non-contact Pain Recognition from Video Sequences with Remote
Physiological Measurements Prediction [53.03469655641418]
痛み認識のための非接触方式で外観変化と生理的手がかりの両方を符号化する新しいマルチタスク学習フレームワークを提案する。
我々は、一般に利用可能な痛みデータベース上で、非接触痛認識の最先端性能を確立する。
論文 参考訳(メタデータ) (2021-05-18T20:47:45Z) - Muti-view Mouse Social Behaviour Recognition with Deep Graphical Model [124.26611454540813]
マウスの社会的行動分析は神経変性疾患の治療効果を評価する貴重なツールである。
マウスの社会行動の豊かな記述を創出する可能性から、ネズミの観察にマルチビュービデオ記録を使用することは、ますます注目を集めている。
本稿では,ビュー固有のサブ構造とビュー共有サブ構造を協調的に学習する,新しい多視点潜在意識・動的識別モデルを提案する。
論文 参考訳(メタデータ) (2020-11-04T18:09:58Z) - A Convolutional Neural Network for gaze preference detection: A
potential tool for diagnostics of autism spectrum disorder in children [0.0]
本稿では,1分間の刺激映像から抽出した画像を用いた視線予測のための畳み込みニューラルネットワーク(CNN)アルゴリズムを提案する。
本モデルでは,被検者の視線方向の予測に高い精度とロバスト性を実現した。
論文 参考訳(メタデータ) (2020-07-28T18:47:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。