論文の概要: ReMOVE: A Reference-free Metric for Object Erasure
- arxiv url: http://arxiv.org/abs/2409.00707v1
- Date: Sun, 1 Sep 2024 12:26:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 12:28:47.670874
- Title: ReMOVE: A Reference-free Metric for Object Erasure
- Title(参考訳): ReMOVE: オブジェクト消去のための参照不要メトリック
- Authors: Aditya Chandrasekar, Goirik Chakrabarty, Jai Bardhan, Ramya Hebbalaguppe, Prathosh AP,
- Abstract要約: 拡散型画像編集モデルにおけるオブジェクト消去効果を評価するための参照不要な新しい指標である$texttReMOVE$を紹介した。
- 参考スコア(独自算出の注目度): 7.8330705738412
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce $\texttt{ReMOVE}$, a novel reference-free metric for assessing object erasure efficacy in diffusion-based image editing models post-generation. Unlike existing measures such as LPIPS and CLIPScore, $\texttt{ReMOVE}$ addresses the challenge of evaluating inpainting without a reference image, common in practical scenarios. It effectively distinguishes between object removal and replacement. This is a key issue in diffusion models due to stochastic nature of image generation. Traditional metrics fail to align with the intuitive definition of inpainting, which aims for (1) seamless object removal within masked regions (2) while preserving the background continuity. $\texttt{ReMOVE}$ not only correlates with state-of-the-art metrics and aligns with human perception but also captures the nuanced aspects of the inpainting process, providing a finer-grained evaluation of the generated outputs.
- Abstract(参考訳): 拡散型画像編集モデルにおけるオブジェクト消去効果を評価するための参照不要な新しい指標である$\texttt{ReMOVE}$を紹介した。
LPIPSやCLIPScoreのような既存の測定方法とは異なり、$\texttt{ReMOVE}$は、実際のシナリオで一般的な参照イメージなしでインペイントを評価するという課題に対処する。
オブジェクトの削除と置換を効果的に区別する。
これは、画像生成の確率的性質による拡散モデルにおける重要な問題である。
従来のメトリクスは,(1)背景の連続性を保ちながら,(1)マスキング領域内でシームレスにオブジェクトを除去することを目的とした,インペイントの直感的な定義と一致しない。
$\texttt{ReMOVE}$は、最先端のメトリクスと相関し、人間の知覚と整合するだけでなく、塗装プロセスのニュアンスな側面を捉え、生成された出力のよりきめ細かい評価を提供する。
関連論文リスト
- Improving Text-guided Object Inpainting with Semantic Pre-inpainting [95.17396565347936]
我々は,典型的な単一ステージオブジェクトを2つのカスケードプロセス – セマンティックプリペイントと高磁場オブジェクト生成 – に分解する。
これを実現するために,トランスフォーマーをベースとしたセマンティックインパインとオブジェクトインパインティング拡散モデルをカスケードし,新しいCAscaded Transformer-Diffusionフレームワークを実現する。
論文 参考訳(メタデータ) (2024-09-12T17:55:37Z) - DiffUHaul: A Training-Free Method for Object Dragging in Images [78.93531472479202]
DiffUHaulと呼ばれるオブジェクトドラッグタスクのためのトレーニング不要な手法を提案する。
まず、各認知段階に注意マスキングを適用して、各生成を異なるオブジェクトにまたがってよりゆがみやすくする。
初期のデノナイジングステップでは、ソース画像とターゲット画像の注意特徴を補間して、新しいレイアウトを元の外観とスムーズに融合させる。
論文 参考訳(メタデータ) (2024-06-03T17:59:53Z) - RecDiffusion: Rectangling for Image Stitching with Diffusion Models [53.824503710254206]
画像縫合整形のための新しい拡散学習フレームワーク textbfRecDiffusion を提案する。
このフレームワークは運動拡散モデル(MDM)を組み合わせて運動場を生成し、縫合された画像の不規則な境界から幾何学的に修正された中間体へ効果的に遷移する。
論文 参考訳(メタデータ) (2024-03-28T06:22:45Z) - SEMPART: Self-supervised Multi-resolution Partitioning of Image
Semantics [0.5439020425818999]
SEMPARTは、追加の後処理なしで高品質なマスクを迅速に製造する。
以上の結果から,SEMPARTはポストプロセッシングを伴わずに高品質なマスクを高速に生成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-20T00:07:30Z) - Inst-Inpaint: Instructing to Remove Objects with Diffusion Models [18.30057229657246]
本研究では,自然言語入力に基づいて除去対象を推定し,同時に除去する画像インペイントアルゴリズムに興味を持つ。
本稿では,テキストプロンプトとして与えられた命令に基づいて画像からオブジェクトを除去する新しいインペイントフレームワークInst-Inpaintを提案する。
論文 参考訳(メタデータ) (2023-04-06T17:29:50Z) - Semantics-Guided Object Removal for Facial Images: with Broad
Applicability and Robust Style Preservation [29.162655333387452]
顔画像における物体の除去と画像の塗布は、顔画像を妨げる物体を特に標的にし、除去し、適切に再構成された顔画像に置き換えるタスクである。
U-netと変調ジェネレータを利用する2つの異なるアプローチは、それぞれに固有の利点があるが、それぞれの手法の固有の欠点にもかかわらず、このタスクに対して広く支持されている。
本稿では,SGIN(Semantics-Guided Inpainting Network)を提案する。
論文 参考訳(メタデータ) (2022-09-29T00:09:12Z) - Self-Supervised Video Object Segmentation via Cutout Prediction and
Tagging [117.73967303377381]
本稿では, 自己教師型ビデオオブジェクト(VOS)アプローチを提案する。
本手法は,対象情報と背景情報の両方を考慮した識別学習損失の定式化に基づく。
提案手法であるCT-VOSは, DAVIS-2017 と Youtube-VOS の2つの挑戦的なベンチマークにおいて,最先端の結果を達成している。
論文 参考訳(メタデータ) (2022-04-22T17:53:27Z) - Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with
Conditional StyleGAN [88.62422914645066]
任意のポーズで1つの画像から人物を再レンダリングするアルゴリズムを提案する。
既存の方法では、画像の同一性や細部を保ちながら、隠蔽されたコンテンツを写実的に幻覚することはしばしば困難である。
本手法は, 定量的評価と視覚的比較の両方において, 最先端のアルゴリズムと良好に比較できることを示す。
論文 参考訳(メタデータ) (2021-09-13T17:59:33Z) - Enhanced Residual Networks for Context-based Image Outpainting [0.0]
深いモデルは、保持された情報を通してコンテキストや外挿を理解するのに苦労する。
現在のモデルでは、生成的敵ネットワークを使用して、局所的な画像特徴の整合性が欠如し、偽のように見える結果を生成する。
本稿では,局所的・大域的判別器の使用と,ネットワークの符号化部における残差ブロックの追加という,この問題を改善するための2つの方法を提案する。
論文 参考訳(メタデータ) (2020-05-14T05:14:26Z) - Learning to Manipulate Individual Objects in an Image [71.55005356240761]
本稿では,独立性および局所性を有する潜在因子を用いた生成モデルを学習する手法について述べる。
これは、潜伏変数の摂動が、オブジェクトに対応する合成画像の局所領域のみに影響を与えることを意味する。
他の教師なし生成モデルとは異なり、オブジェクトレベルのアノテーションを必要とせず、オブジェクト中心の操作を可能にする。
論文 参考訳(メタデータ) (2020-04-11T21:50:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。