MoManifold: Learning to Measure 3D Human Motion via Decoupled Joint Acceleration Manifolds
- URL: http://arxiv.org/abs/2409.00736v1
- Date: Sun, 1 Sep 2024 15:00:16 GMT
- Title: MoManifold: Learning to Measure 3D Human Motion via Decoupled Joint Acceleration Manifolds
- Authors: Ziqiang Dang, Tianxing Fan, Boming Zhao, Xujie Shen, Lei Wang, Guofeng Zhang, Zhaopeng Cui,
- Abstract summary: We present MoManifold, a novel human motion prior, which models plausible human motion in continuous high-dimensional motion space.
Specifically, we propose novel decoupled joint acceleration to model human dynamics from existing limited motion data.
Extensive experiments demonstrate that MoManifold outperforms existing SOTAs as a prior in several downstream tasks.
- Score: 20.83684434910106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incorporating temporal information effectively is important for accurate 3D human motion estimation and generation which have wide applications from human-computer interaction to AR/VR. In this paper, we present MoManifold, a novel human motion prior, which models plausible human motion in continuous high-dimensional motion space. Different from existing mathematical or VAE-based methods, our representation is designed based on the neural distance field, which makes human dynamics explicitly quantified to a score and thus can measure human motion plausibility. Specifically, we propose novel decoupled joint acceleration manifolds to model human dynamics from existing limited motion data. Moreover, we introduce a novel optimization method using the manifold distance as guidance, which facilitates a variety of motion-related tasks. Extensive experiments demonstrate that MoManifold outperforms existing SOTAs as a prior in several downstream tasks such as denoising real-world human mocap data, recovering human motion from partial 3D observations, mitigating jitters for SMPL-based pose estimators, and refining the results of motion in-betweening.
Related papers
- Sitcom-Crafter: A Plot-Driven Human Motion Generation System in 3D Scenes [83.55301458112672]
Sitcom-Crafter is a system for human motion generation in 3D space.
Central to the function generation modules is our novel 3D scene-aware human-human interaction module.
Augmentation modules encompass plot comprehension for command generation, motion synchronization for seamless integration of different motion types.
arXiv Detail & Related papers (2024-10-14T17:56:19Z) - Aligning Human Motion Generation with Human Perceptions [51.831338643012444]
We propose a data-driven approach to bridge the gap by introducing a large-scale human perceptual evaluation dataset, MotionPercept, and a human motion critic model, MotionCritic.
Our critic model offers a more accurate metric for assessing motion quality and could be readily integrated into the motion generation pipeline.
arXiv Detail & Related papers (2024-07-02T14:01:59Z) - GazeMoDiff: Gaze-guided Diffusion Model for Stochastic Human Motion Prediction [10.982807572404166]
We present GazeMo - a novel gaze-guided denoising diffusion model to generate human motions.
Our method first uses a gaze encoder to extract the gaze and motion features respectively, then employs a graph attention network to fuse these features.
Our method outperforms the state-of-the-art methods by a large margin in terms of multi-modal final error.
arXiv Detail & Related papers (2023-12-19T12:10:12Z) - Executing your Commands via Motion Diffusion in Latent Space [51.64652463205012]
We propose a Motion Latent-based Diffusion model (MLD) to produce vivid motion sequences conforming to the given conditional inputs.
Our MLD achieves significant improvements over the state-of-the-art methods among extensive human motion generation tasks.
arXiv Detail & Related papers (2022-12-08T03:07:00Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z) - H4D: Human 4D Modeling by Learning Neural Compositional Representation [75.34798886466311]
This work presents a novel framework that can effectively learn a compact and compositional representation for dynamic human.
A simple yet effective linear motion model is proposed to provide a rough and regularized motion estimation.
Experiments demonstrate our method is not only efficacy in recovering dynamic human with accurate motion and detailed geometry, but also amenable to various 4D human related tasks.
arXiv Detail & Related papers (2022-03-02T17:10:49Z) - Human Motion Prediction Using Manifold-Aware Wasserstein GAN [4.771549505875783]
We build a manifold-aware Wasserstein generative adversarial model that captures the temporal and spatial dependencies of human motion.
Our approach outperforms the state-of-the-art on CMU MoCap and Human 3.6M datasets.
arXiv Detail & Related papers (2021-05-18T17:56:10Z) - HuMoR: 3D Human Motion Model for Robust Pose Estimation [100.55369985297797]
HuMoR is a 3D Human Motion Model for Robust Estimation of temporal pose and shape.
We introduce a conditional variational autoencoder, which learns a distribution of the change in pose at each step of a motion sequence.
We demonstrate that our model generalizes to diverse motions and body shapes after training on a large motion capture dataset.
arXiv Detail & Related papers (2021-05-10T21:04:55Z) - Multi-grained Trajectory Graph Convolutional Networks for
Habit-unrelated Human Motion Prediction [4.070072825448614]
A multigrained graph convolutional networks based lightweight framework is proposed for habit-unrelated human motion prediction.
A new motion generation method is proposed to generate the motion with left-handedness, to better model the motion with less bias to the human habit.
Experimental results on challenging datasets, including Humantemporal3.6M and CMU Mocap, show that the proposed model outperforms state-of-the-art with less than 0.12 times parameters.
arXiv Detail & Related papers (2020-12-23T09:41:50Z) - 3D Human Motion Estimation via Motion Compression and Refinement [27.49664453166726]
We develop a technique for generating smooth and accurate 3D human pose and motion estimates from RGB video sequences.
Our method, which we call Motion Estimation via Variational Autoencoder (MEVA), decomposes a temporal sequence of human motion into a smooth motion representation.
arXiv Detail & Related papers (2020-08-09T19:02:29Z) - Action2Motion: Conditioned Generation of 3D Human Motions [28.031644518303075]
We aim to generateplausible human motion sequences in 3D.
Each sampled sequence faithfully resembles anaturalhuman bodyarticulation dynamics.
A new 3D human motion dataset, HumanAct12, is also constructed.
arXiv Detail & Related papers (2020-07-30T05:29:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.