Human Motion Prediction Using Manifold-Aware Wasserstein GAN
- URL: http://arxiv.org/abs/2105.08715v1
- Date: Tue, 18 May 2021 17:56:10 GMT
- Title: Human Motion Prediction Using Manifold-Aware Wasserstein GAN
- Authors: Baptiste Chopin, Naima Otberdout, Mohamed Daoudi, Angela Bartolo
- Abstract summary: We build a manifold-aware Wasserstein generative adversarial model that captures the temporal and spatial dependencies of human motion.
Our approach outperforms the state-of-the-art on CMU MoCap and Human 3.6M datasets.
- Score: 4.771549505875783
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human motion prediction aims to forecast future human poses given a prior
pose sequence. The discontinuity of the predicted motion and the performance
deterioration in long-term horizons are still the main challenges encountered
in current literature. In this work, we tackle these issues by using a compact
manifold-valued representation of human motion. Specifically, we model the
temporal evolution of the 3D human poses as trajectory, what allows us to map
human motions to single points on a sphere manifold. To learn these
non-Euclidean representations, we build a manifold-aware Wasserstein generative
adversarial model that captures the temporal and spatial dependencies of human
motion through different losses. Extensive experiments show that our approach
outperforms the state-of-the-art on CMU MoCap and Human 3.6M datasets. Our
qualitative results show the smoothness of the predicted motions.
Related papers
- MoManifold: Learning to Measure 3D Human Motion via Decoupled Joint Acceleration Manifolds [20.83684434910106]
We present MoManifold, a novel human motion prior, which models plausible human motion in continuous high-dimensional motion space.
Specifically, we propose novel decoupled joint acceleration to model human dynamics from existing limited motion data.
Extensive experiments demonstrate that MoManifold outperforms existing SOTAs as a prior in several downstream tasks.
arXiv Detail & Related papers (2024-09-01T15:00:16Z) - DMMGAN: Diverse Multi Motion Prediction of 3D Human Joints using
Attention-Based Generative Adverserial Network [9.247294820004143]
We propose a transformer-based generative model for forecasting multiple diverse human motions.
Our model first predicts the pose of the body relative to the hip joint. Then the textitHip Prediction Module predicts the trajectory of the hip movement for each predicted pose frame.
We show that our system outperforms the state-of-the-art in human motion prediction while it can predict diverse multi-motion future trajectories with hip movements.
arXiv Detail & Related papers (2022-09-13T23:22:33Z) - 3D Skeleton-based Human Motion Prediction with Manifold-Aware GAN [3.1313293632309827]
We propose a novel solution for 3D skeleton-based human motion prediction.
We build a manifold-aware Wasserstein generative adversarial model that captures the temporal and spatial dependencies of human motion.
Experiments have been conducted on CMU MoCap and Human 3.6M datasets.
arXiv Detail & Related papers (2022-03-01T20:49:13Z) - Motion Prediction via Joint Dependency Modeling in Phase Space [40.54430409142653]
We introduce a novel convolutional neural model to leverage explicit prior knowledge of motion anatomy.
We then propose a global optimization module that learns the implicit relationships between individual joint features.
Our method is evaluated on large-scale 3D human motion benchmark datasets.
arXiv Detail & Related papers (2022-01-07T08:30:01Z) - Investigating Pose Representations and Motion Contexts Modeling for 3D
Motion Prediction [63.62263239934777]
We conduct an indepth study on various pose representations with a focus on their effects on the motion prediction task.
We propose a novel RNN architecture termed AHMR (Attentive Hierarchical Motion Recurrent network) for motion prediction.
Our approach outperforms the state-of-the-art methods in short-term prediction and achieves much enhanced long-term prediction proficiency.
arXiv Detail & Related papers (2021-12-30T10:45:22Z) - Generating Smooth Pose Sequences for Diverse Human Motion Prediction [90.45823619796674]
We introduce a unified deep generative network for both diverse and controllable motion prediction.
Our experiments on two standard benchmark datasets, Human3.6M and HumanEva-I, demonstrate that our approach outperforms the state-of-the-art baselines in terms of both sample diversity and accuracy.
arXiv Detail & Related papers (2021-08-19T00:58:00Z) - Multi-level Motion Attention for Human Motion Prediction [132.29963836262394]
We study the use of different types of attention, computed at joint, body part, and full pose levels.
Our experiments on Human3.6M, AMASS and 3DPW validate the benefits of our approach for both periodical and non-periodical actions.
arXiv Detail & Related papers (2021-06-17T08:08:11Z) - Long Term Motion Prediction Using Keyposes [122.22758311506588]
We argue that, to achieve long term forecasting, predicting human pose at every time instant is unnecessary.
We call such poses "keyposes", and approximate complex motions by linearly interpolating between subsequent keyposes.
We show that learning the sequence of such keyposes allows us to predict very long term motion, up to 5 seconds in the future.
arXiv Detail & Related papers (2020-12-08T20:45:51Z) - Perpetual Motion: Generating Unbounded Human Motion [61.40259979876424]
We focus on long-term prediction; that is, generating long sequences of human motion that is plausible.
We propose a model to generate non-deterministic, textitever-changing, perpetual human motion.
We train this using a heavy-tailed function of the KL divergence of a white-noise Gaussian process, allowing latent sequence temporal dependency.
arXiv Detail & Related papers (2020-07-27T21:50:36Z) - History Repeats Itself: Human Motion Prediction via Motion Attention [81.94175022575966]
We introduce an attention-based feed-forward network that explicitly leverages the observation that human motion tends to repeat itself.
In particular, we propose to extract motion attention to capture the similarity between the current motion context and the historical motion sub-sequences.
Our experiments on Human3.6M, AMASS and 3DPW evidence the benefits of our approach for both periodical and non-periodical actions.
arXiv Detail & Related papers (2020-07-23T02:12:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.