論文の概要: Dissecting Temporal Understanding in Text-to-Audio Retrieval
- arxiv url: http://arxiv.org/abs/2409.00851v1
- Date: Sun, 1 Sep 2024 22:01:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 08:40:50.672566
- Title: Dissecting Temporal Understanding in Text-to-Audio Retrieval
- Title(参考訳): テキスト・ツー・オーディオ検索における時間的理解の分別
- Authors: Andreea-Maria Oncescu, João F. Henriques, A. Sophia Koepke,
- Abstract要約: テキスト・音声検索の文脈において,音の時間的順序付けは未検討の問題である。
特に,AudioCaps および Clotho データセット上でのテキスト音声検索のための最先端モデルの時間的理解能力について検討する。
本稿では,テキストオーディオモデルにイベントの時間的順序付けに焦点をあてるロス関数を提案する。
- 参考スコア(独自算出の注目度): 22.17493527005141
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advancements in machine learning have fueled research on multimodal tasks, such as for instance text-to-video and text-to-audio retrieval. These tasks require models to understand the semantic content of video and audio data, including objects, and characters. The models also need to learn spatial arrangements and temporal relationships. In this work, we analyse the temporal ordering of sounds, which is an understudied problem in the context of text-to-audio retrieval. In particular, we dissect the temporal understanding capabilities of a state-of-the-art model for text-to-audio retrieval on the AudioCaps and Clotho datasets. Additionally, we introduce a synthetic text-audio dataset that provides a controlled setting for evaluating temporal capabilities of recent models. Lastly, we present a loss function that encourages text-audio models to focus on the temporal ordering of events. Code and data are available at https://www.robots.ox.ac.uk/~vgg/research/audio-retrieval/dtu/.
- Abstract(参考訳): 機械学習の最近の進歩は、例えば、テキスト・トゥ・ビデオやテキスト・トゥ・オーディオ検索のようなマルチモーダルタスクの研究を後押ししている。
これらのタスクは、オブジェクトや文字を含むビデオやオーディオデータのセマンティックな内容を理解するモデルを必要とする。
モデルは空間的配置や時間的関係も学ばなければならない。
本研究では,テキスト・音声検索の文脈における課題である音の時間的順序付けについて分析する。
特に,AudioCaps および Clotho データセット上でのテキスト音声検索のための最先端モデルの時間的理解能力について検討する。
さらに、最近のモデルの時間的能力を評価するための制御された設定を提供する合成テキストオーディオデータセットも導入する。
最後に,テキスト・オーディオ・モデルにイベントの時間的順序付けに集中させるロス関数を提案する。
コードとデータはhttps://www.robots.ox.uk/~vgg/research/audio-retrieval/dtu/で公開されている。
関連論文リスト
- Learning Audio Concepts from Counterfactual Natural Language [34.118579918018725]
本研究では,音声領域における因果推論と反事実解析を紹介する。
本モデルは,人間の注釈付き参照テキストからの音響特性と音源情報について考察する。
具体的には、オープンエンド言語に基づく音声検索タスクにおけるトップ1の精度が43%以上向上した。
論文 参考訳(メタデータ) (2024-01-10T05:15:09Z) - Exploring the Viability of Synthetic Audio Data for Audio-Based Dialogue
State Tracking [19.754211231250544]
我々は、カスケードモデルとエンドツーエンドモデルを開発し、合成音声データセットでそれらを訓練し、実際の人間の音声データでそれらをテストする。
実験結果から,合成データセットのみを訓練したモデルでは,その性能を人間の音声データに一般化できることがわかった。
論文 参考訳(メタデータ) (2023-12-04T12:25:46Z) - Retrieval-Augmented Text-to-Audio Generation [36.328134891428085]
本稿では,AudioLDMのような最先端モデルが,その世代性能に偏っていることを示す。
本稿では,TTAモデルに対する単純な検索拡張手法を提案する。
Re-AudioLDMは、複雑なシーン、稀なオーディオクラス、さらには目に見えないオーディオタイプに対して、現実的なオーディオを生成することができる。
論文 参考訳(メタデータ) (2023-09-14T22:35:39Z) - Large-scale unsupervised audio pre-training for video-to-speech
synthesis [64.86087257004883]
音声合成は、話者の無声映像から音声信号を再構成する作業である。
本稿では,24kHzで3,500時間以上のオーディオデータをエンコーダ・デコーダモデルでトレーニングすることを提案する。
次に、事前学習したデコーダを用いて、音声合成タスクの音声デコーダを初期化する。
論文 参考訳(メタデータ) (2023-06-27T13:31:33Z) - Exploring the Role of Audio in Video Captioning [59.679122191706426]
本稿では,キャプションの音響モダリティの可能性をフル活用することを目的とした音声視覚フレームワークを提案する。
本稿では,音声とビデオ間の情報交換を改善するため,新たなローカル・グローバル融合機構を提案する。
論文 参考訳(メタデータ) (2023-06-21T20:54:52Z) - CLIPSonic: Text-to-Audio Synthesis with Unlabeled Videos and Pretrained
Language-Vision Models [50.42886595228255]
本稿では,橋梁としての視覚的モダリティを活用して,所望のテキスト・オーディオ対応を学習することを提案する。
我々は、事前訓練されたコントラスト言語画像事前学習モデルによって符号化されたビデオフレームを考慮し、条件付き拡散モデルを用いてビデオの音声トラックを生成する。
論文 参考訳(メタデータ) (2023-06-16T05:42:01Z) - Make-An-Audio 2: Temporal-Enhanced Text-to-Audio Generation [72.7915031238824]
大規模な拡散モデルは、テキスト・トゥ・オーディオ(T2A)合成タスクで成功している。
意味的不一致や時間的一貫性の低下といった共通の問題に悩まされることが多い。
我々は,Make-an-Audioの成功に基づいて,潜伏拡散に基づくT2A法であるMake-an-Audio 2を提案する。
論文 参考訳(メタデータ) (2023-05-29T10:41:28Z) - WavCaps: A ChatGPT-Assisted Weakly-Labelled Audio Captioning Dataset for Audio-Language Multimodal Research [82.42802570171096]
約400kの音声クリップとペアキャプションを組み合わせた,大規模な音声キャプションデータセットであるWavCapsを紹介した。
オンラインハーベストな生の記述は非常にうるさいし、自動音声キャプションなどのタスクで直接使うには適さない。
本稿では,大規模な言語モデルであるChatGPTを用いて,ノイズの多いデータをフィルタリングし,高品質なキャプションを生成するための3段階処理パイプラインを提案する。
論文 参考訳(メタデータ) (2023-03-30T14:07:47Z) - AudioGen: Textually Guided Audio Generation [116.57006301417306]
記述文キャプションに条件付き音声サンプルを生成する問題に対処する。
本研究では,テキスト入力に条件付き音声サンプルを生成する自動回帰モデルであるAaudioGenを提案する。
論文 参考訳(メタデータ) (2022-09-30T10:17:05Z) - Audio-text Retrieval in Context [24.38055340045366]
そこで本研究では,音声・テキストのアライメントを改善するために,複数のオーディオ機能とシーケンスアグリゲーション手法について検討する。
我々は,事前学習した音声特徴と記述子に基づくアグリゲーション法を用いた文脈音声テキスト検索システムを構築した。
提案システムでは、リコール、中央値、平均値を含むすべての指標において、双方向音声テキスト検索において顕著な改善が達成されている。
論文 参考訳(メタデータ) (2022-03-25T13:41:17Z) - Artificially Synthesising Data for Audio Classification and Segmentation
to Improve Speech and Music Detection in Radio Broadcast [0.0]
無線信号に類似したデータを人工的に合成する新しい手順を提案する。
この合成データに対して畳み込み型リカレントニューラルネットワーク(crnn)を訓練し,音楽音声検出のための最先端アルゴリズムと比較した。
論文 参考訳(メタデータ) (2021-02-19T14:47:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。