Self-evolving Agents with reflective and memory-augmented abilities
- URL: http://arxiv.org/abs/2409.00872v1
- Date: Sun, 1 Sep 2024 23:36:34 GMT
- Title: Self-evolving Agents with reflective and memory-augmented abilities
- Authors: Xuechen Liang, Meiling Tao, Yinghui Xia, Tianyu Shi, Jun Wang, JingSong Yang,
- Abstract summary: Large language models (LLMs) have made significant advances in the field of natural language processing, but they still face challenges such as continuous decision-making.
We propose a novel framework by integrating iterative feedback, reflective mechanisms, and a memory optimization mechanism based on the Ebbinghaus forgetting curve.
- Score: 8.123272461141815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have made significant advances in the field of natural language processing, but they still face challenges such as continuous decision-making. In this research, we propose a novel framework by integrating iterative feedback, reflective mechanisms, and a memory optimization mechanism based on the Ebbinghaus forgetting curve, it significantly enhances the agents' capabilities in handling multi-tasking and long-span information.
Related papers
- On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - RAG-Modulo: Solving Sequential Tasks using Experience, Critics, and Language Models [5.0741409008225755]
Large language models (LLMs) have emerged as promising tools for solving challenging robotic tasks.
Most existing LLM-based agents lack the ability to retain and learn from past interactions.
We propose RAG-Modulo, a framework that enhances LLM-based agents with a memory of past interactions and incorporates critics to evaluate the agents' decisions.
arXiv Detail & Related papers (2024-09-18T20:03:32Z) - Hello Again! LLM-powered Personalized Agent for Long-term Dialogue [63.65128176360345]
We introduce a model-agnostic framework, the Long-term Dialogue Agent (LD-Agent)
It incorporates three independently tunable modules dedicated to event perception, persona extraction, and response generation.
The effectiveness, generality, and cross-domain capabilities of LD-Agent are empirically demonstrated.
arXiv Detail & Related papers (2024-06-09T21:58:32Z) - A Survey on the Memory Mechanism of Large Language Model based Agents [66.4963345269611]
Large language model (LLM) based agents have recently attracted much attention from the research and industry communities.
LLM-based agents are featured in their self-evolving capability, which is the basis for solving real-world problems.
The key component to support agent-environment interactions is the memory of the agents.
arXiv Detail & Related papers (2024-04-21T01:49:46Z) - Memory Sharing for Large Language Model based Agents [43.53494041932615]
This paper introduces the Memory Sharing, a framework which integrates the real-time memory filter, storage and retrieval to enhance the In-Context Learning process.
The experimental results demonstrate that the MS framework significantly improves the agents' performance in addressing open-ended questions.
arXiv Detail & Related papers (2024-04-15T17:57:30Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
We present a novel interactive application aimed towards understanding the internal mechanisms of large vision-language models.
Our interface is designed to enhance the interpretability of the image patches, which are instrumental in generating an answer.
We present a case study of how our application can aid in understanding failure mechanisms in a popular large multi-modal model: LLaVA.
arXiv Detail & Related papers (2024-04-03T23:57:34Z) - CMAT: A Multi-Agent Collaboration Tuning Framework for Enhancing Small Language Models [8.123272461141815]
We introduce the TinyAgent model, trained on a meticulously curated high-quality dataset.
We also present the Collaborative Multi-Agent Tuning (CMAT) framework, an innovative system designed to augment language agent capabilities.
In this research, we propose a new communication agent framework that integrates multi-agent systems with environmental feedback mechanisms.
arXiv Detail & Related papers (2024-04-02T06:07:35Z) - SELF: Self-Evolution with Language Feedback [68.6673019284853]
'SELF' (Self-Evolution with Language Feedback) is a novel approach to advance large language models.
It enables LLMs to self-improve through self-reflection, akin to human learning processes.
Our experiments in mathematics and general tasks demonstrate that SELF can enhance the capabilities of LLMs without human intervention.
arXiv Detail & Related papers (2023-10-01T00:52:24Z) - Feature Interaction Aware Automated Data Representation Transformation [27.26916497306978]
We develop a hierarchical reinforcement learning structure with cascading Markov Decision Processes to automate feature and operation selection.
We reward agents based on the interaction strength between selected features, resulting in intelligent and efficient exploration of the feature space that emulates human decision-making.
arXiv Detail & Related papers (2023-09-29T06:48:16Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
We present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer.
Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks.
Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate.
arXiv Detail & Related papers (2023-05-23T17:55:11Z) - Reflexion: Language Agents with Verbal Reinforcement Learning [44.85337947858337]
Reflexion is a novel framework to reinforce language agents not by updating weights, but through linguistic feedback.
It is flexible enough to incorporate various types (scalar values or free-form language) and sources (external or internally simulated) of feedback signals.
For example, Reflexion achieves a 91% pass@1 accuracy on the HumanEval coding benchmark, surpassing the previous state-of-the-art GPT-4 that achieves 80%.
arXiv Detail & Related papers (2023-03-20T18:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.