The Impact of Generative AI-Powered Code Generation Tools on Software Engineer Hiring: Recruiters' Experiences, Perceptions, and Strategies
- URL: http://arxiv.org/abs/2409.00875v1
- Date: Mon, 2 Sep 2024 00:00:29 GMT
- Title: The Impact of Generative AI-Powered Code Generation Tools on Software Engineer Hiring: Recruiters' Experiences, Perceptions, and Strategies
- Authors: Alyssia Chen, Timothy Huo, Yunhee Nam, Dan Port, Anthony Peruma,
- Abstract summary: This study explores recruiters' experiences and perceptions regarding GenAI-powered code generation tools.
Findings from our survey of 32 industry professionals indicate that although most participants are familiar with such tools, the majority of organizations have not adjusted their candidate evaluation methods to account for candidates' use/knowledge of these tools.
Most participants believe that it is important to incorporate GenAI-powered code generation tools into computer science curricula.
- Score: 4.557635080377692
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancements in Generative AI (GenAI) tools, such as ChatGPT and GitHub Copilot, are transforming software engineering by automating code generation tasks. While these tools improve developer productivity, they also present challenges for organizations and hiring professionals in evaluating software engineering candidates' true abilities and potential. Although there is existing research on these tools in both industry and academia, there is a lack of research on how these tools specifically affect the hiring process. Therefore, this study aims to explore recruiters' experiences and perceptions regarding GenAI-powered code generation tools, as well as their challenges and strategies for evaluating candidates. Findings from our survey of 32 industry professionals indicate that although most participants are familiar with such tools, the majority of organizations have not adjusted their candidate evaluation methods to account for candidates' use/knowledge of these tools. There are mixed opinions on whether candidates should be allowed to use these tools during interviews, with many participants valuing candidates who can effectively demonstrate their skills in using these tools. Additionally, most participants believe that it is important to incorporate GenAI-powered code generation tools into computer science curricula and mention the key risks and benefits of doing so.
Related papers
- Dear Diary: A randomized controlled trial of Generative AI coding tools in the workplace [2.5280615594444567]
Generative AI coding tools are relatively new, and their impact on developers extends beyond traditional coding metrics.
This study aims to illuminate developers' preexisting beliefs about generative AI tools, their self perceptions, and how regular use of these tools may alter these beliefs.
Our findings reveal that the introduction and sustained use of generative AI coding tools significantly increases developers' perceptions of these tools as both useful and enjoyable.
arXiv Detail & Related papers (2024-10-24T00:07:27Z) - Students' Perceptions and Use of Generative AI Tools for Programming Across Different Computing Courses [1.7811951520198]
Investigation of students' perceptions and opinions on the use of generative artificial intelligence (GenAI) in education is a topic gaining much interest.
How students perceive and use GenAI tools can potentially depend on many factors, including their background knowledge.
We conducted three surveys among students of all computing programs of a large European research university.
arXiv Detail & Related papers (2024-10-09T13:24:06Z) - The Role of Generative AI in Software Development Productivity: A Pilot Case Study [0.0]
This paper investigates the integration of generative AI tools within software development.
Through a pilot case study, we gathered valuable experiences on the integration of generative AI tools into their daily work routines.
Our findings reveal a generally positive perception of these tools in individual productivity while also highlighting the need to address identified limitations.
arXiv Detail & Related papers (2024-06-01T21:51:33Z) - Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
We present insights from SE researchers and practitioners on challenges and solutions regarding diversity and inclusion in SE.
We share potential utopian and dystopian visions of the future and provide future research directions and implications for academia and industry.
arXiv Detail & Related papers (2024-04-10T16:18:11Z) - Charting a Path to Efficient Onboarding: The Role of Software
Visualization [49.1574468325115]
The present study aims to explore the familiarity of managers, leaders, and developers with software visualization tools.
This approach incorporated quantitative and qualitative analyses of data collected from practitioners using questionnaires and semi-structured interviews.
arXiv Detail & Related papers (2024-01-17T21:30:45Z) - Generative Artificial Intelligence for Software Engineering -- A
Research Agenda [8.685607624226037]
We conducted a literature review and focus groups for a duration of five months to develop a research agenda on GenAI for Software Engineering.
Our results show that it is possible to explore the adoption of GenAI in partial automation and support decision-making in all software development activities.
Common considerations when implementing GenAI include industry-level assessment, dependability and accuracy, data accessibility, transparency, and sustainability aspects associated with the technology.
arXiv Detail & Related papers (2023-10-28T09:14:39Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
This research focuses on finding an efficient machine learning algorithm to identify software weaknesses from requirement specifications.
Keywords extracted using latent semantic analysis help map the CWE categories to PROMISE_exp. Naive Bayes, support vector machine (SVM), decision trees, neural network, and convolutional neural network (CNN) algorithms were tested.
arXiv Detail & Related papers (2023-08-10T13:19:10Z) - LLM-based Interaction for Content Generation: A Case Study on the
Perception of Employees in an IT department [85.1523466539595]
This paper presents a questionnaire survey to identify the intention to use generative tools by employees of an IT company.
Our results indicate a rather average acceptability of generative tools, although the more useful the tool is perceived to be, the higher the intention seems to be.
Our analyses suggest that the frequency of use of generative tools is likely to be a key factor in understanding how employees perceive these tools in the context of their work.
arXiv Detail & Related papers (2023-04-18T15:35:43Z) - A Large-Scale Survey on the Usability of AI Programming Assistants:
Successes and Challenges [23.467373994306524]
In practice, developers do not accept AI programming assistants' initial suggestions at a high frequency.
To understand developers' practices while using these tools, we administered a survey to a large population of developers.
We found that developers are most motivated to use AI programming assistants because they help developers reduce key-strokes, finish programming tasks quickly, and recall syntax.
We also found the most important reasons why developers do not use these tools are because these tools do not output code that addresses certain functional or non-functional requirements.
arXiv Detail & Related papers (2023-03-30T03:21:53Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
We study whether conveying information about uncertainty enables programmers to more quickly and accurately produce code.
We find that highlighting tokens with the highest predicted likelihood of being edited leads to faster task completion and more targeted edits.
arXiv Detail & Related papers (2023-02-14T18:43:34Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.