論文の概要: ToolACE: Winning the Points of LLM Function Calling
- arxiv url: http://arxiv.org/abs/2409.00920v1
- Date: Mon, 2 Sep 2024 03:19:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 08:21:03.091246
- Title: ToolACE: Winning the Points of LLM Function Calling
- Title(参考訳): ToolACE: LLM関数呼び出しのポイントを獲得する
- Authors: Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan, Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yuxian Wang, Wu Ning, Yutai Hou, Bin Wang, Chuhan Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng Shang, Xin Jiang, Ruiming Tang, Defu Lian, Qun Liu, Enhong Chen,
- Abstract要約: ToolACEは、正確で複雑で多様なツール学習データを生成するように設計された自動エージェントパイプラインである。
我々は、合成データに基づいてトレーニングされたモデルが、8Bパラメータだけで、バークレー・ファンクション・カリング・リーダーボード上で最先端のパフォーマンスを達成することを実証した。
- 参考スコア(独自算出の注目度): 139.07157814653638
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Function calling significantly extends the application boundary of large language models, where high-quality and diverse training data is critical for unlocking this capability. However, real function-calling data is quite challenging to collect and annotate, while synthetic data generated by existing pipelines tends to lack coverage and accuracy. In this paper, we present ToolACE, an automatic agentic pipeline designed to generate accurate, complex, and diverse tool-learning data. ToolACE leverages a novel self-evolution synthesis process to curate a comprehensive API pool of 26,507 diverse APIs. Dialogs are further generated through the interplay among multiple agents, guided by a formalized thinking process. To ensure data accuracy, we implement a dual-layer verification system combining rule-based and model-based checks. We demonstrate that models trained on our synthesized data, even with only 8B parameters, achieve state-of-the-art performance on the Berkeley Function-Calling Leaderboard, rivaling the latest GPT-4 models. Our model and a subset of the data are publicly available at https://huggingface.co/Team-ACE.
- Abstract(参考訳): 関数呼び出しは大きな言語モデルのアプリケーション境界を大幅に拡張し、高品質で多様なトレーニングデータがこの機能のアンロックに不可欠である。
しかし、実際の関数呼び出しデータは収集と注釈が難しい一方で、既存のパイプラインで生成された合成データは、カバレッジと正確性に欠ける傾向にある。
本稿では,高精度で複雑で多様なツール学習データを生成するための自動エージェントパイプラインであるToolACEを提案する。
ToolACEは、新しい自己進化合成プロセスを活用して、26,507の多様なAPIの包括的なAPIプールをキュレートする。
ダイアログは、複数のエージェント間の相互作用を通じてさらに生成され、形式化された思考プロセスによってガイドされる。
データ精度を確保するため、ルールベースとモデルベースのチェックを組み合わせた二重層検証システムを実装した。
我々は、合成データに基づいてトレーニングされたモデルが、8Bパラメータだけで、最新のGPT-4モデルに匹敵する、バークレー・ファンクション・カリング・リーダーボードで最先端のパフォーマンスを達成することを実証した。
我々のモデルとデータのサブセットはhttps://huggingface.co/Team-ACE.comで公開されています。
関連論文リスト
- ToolFlow: Boosting LLM Tool-Calling Through Natural and Coherent Dialogue Synthesis [80.34000499166648]
より関連性の高いツールの組み合わせをサンプリングするためのグラフベースのサンプリング戦略と、コヒーレントな対話の合成を導く計画を作成するための計画生成戦略を提案する。
ツールフローで生成した8000の合成対話を用いてLLaMA-3.1-8BにSFTを適用した。
その結果,GPT-4に匹敵するツールコール性能が得られた。
論文 参考訳(メタデータ) (2024-10-24T05:45:04Z) - Language Supervised Human Action Recognition with Salient Fusion: Construction Worker Action Recognition as a Use Case [8.26451988845854]
本研究では,人間の行動認識(HAR)に骨格と視覚的手がかりをベースとした新しいアプローチを提案する。
特徴表現を最適化するために,スケルトンモダリティを条件とした言語モデルに対して学習可能なプロンプトを用いる。
建設現場における実世界のロボット応用に適した新しいデータセットを導入し,視覚,骨格,深度データモダリティを特徴とする。
論文 参考訳(メタデータ) (2024-10-02T19:10:23Z) - Granite-Function Calling Model: Introducing Function Calling Abilities via Multi-task Learning of Granular Tasks [35.97890508648945]
我々はApache 2.0ライセンスの下で-20B-FUNCTIONCALLINGモデルを紹介します。
モデルは7つの基本的なタスクに対してマルチタスクトレーニングアプローチを使用してトレーニングされる。
20B-FUNCTIONCALLINGは、7つの異なる評価データセットにおいて、複数のタスクに対してより一般化可能であることを示す。
論文 参考訳(メタデータ) (2024-06-27T17:47:26Z) - APIGen: Automated Pipeline for Generating Verifiable and Diverse Function-Calling Datasets [99.8988504388011]
APIGenは、関数呼び出しアプリケーションのための検証可能な高品質データセットを合成するために設計された、自動データ生成パイプラインである。
APIGenを活用して、21のカテゴリにわたる3,673の実行可能なAPIを収集し、多様な関数呼び出しデータセットを生成します。
機能呼び出しエージェントドメインの分野を推し進めるため、6万の高品質なエントリを含むデータセットをリリースする。
論文 参考訳(メタデータ) (2024-06-26T17:49:11Z) - An Integrated Data Processing Framework for Pretraining Foundation Models [57.47845148721817]
研究者や実践者は、しばしば異なるソースからデータセットを手動でキュレートする必要がある。
本稿では,処理モジュールと解析モジュールを統合したデータ処理フレームワークを提案する。
提案されたフレームワークは使いやすく、柔軟です。
論文 参考訳(メタデータ) (2024-02-26T07:22:51Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - AutoFIS: Automatic Feature Interaction Selection in Factorization Models
for Click-Through Rate Prediction [75.16836697734995]
自動特徴相互作用選択(AutoFIS)と呼ばれる2段階のアルゴリズムを提案する。
AutoFISは、目標モデルを収束させるためにトレーニングするのと同等の計算コストで、因子化モデルに対する重要な特徴的相互作用を自動的に識別することができる。
AutoFISはHuawei App Storeレコメンデーションサービスのトレーニングプラットフォームにデプロイされている。
論文 参考訳(メタデータ) (2020-03-25T06:53:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。