Semantically Controllable Augmentations for Generalizable Robot Learning
- URL: http://arxiv.org/abs/2409.00951v1
- Date: Mon, 2 Sep 2024 05:25:34 GMT
- Title: Semantically Controllable Augmentations for Generalizable Robot Learning
- Authors: Zoey Chen, Zhao Mandi, Homanga Bharadhwaj, Mohit Sharma, Shuran Song, Abhishek Gupta, Vikash Kumar,
- Abstract summary: Generalization to unseen real-world scenarios for robot manipulation requires exposure to diverse datasets during training.
We propose a generative augmentation framework for semantically controllable augmentations and rapidly multiplying robot datasets.
- Score: 40.89398799604755
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generalization to unseen real-world scenarios for robot manipulation requires exposure to diverse datasets during training. However, collecting large real-world datasets is intractable due to high operational costs. For robot learning to generalize despite these challenges, it is essential to leverage sources of data or priors beyond the robot's direct experience. In this work, we posit that image-text generative models, which are pre-trained on large corpora of web-scraped data, can serve as such a data source. These generative models encompass a broad range of real-world scenarios beyond a robot's direct experience and can synthesize novel synthetic experiences that expose robotic agents to additional world priors aiding real-world generalization at no extra cost. In particular, our approach leverages pre-trained generative models as an effective tool for data augmentation. We propose a generative augmentation framework for semantically controllable augmentations and rapidly multiplying robot datasets while inducing rich variations that enable real-world generalization. Based on diverse augmentations of robot data, we show how scalable robot manipulation policies can be trained and deployed both in simulation and in unseen real-world environments such as kitchens and table-tops. By demonstrating the effectiveness of image-text generative models in diverse real-world robotic applications, our generative augmentation framework provides a scalable and efficient path for boosting generalization in robot learning at no extra human cost.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Robot Utility Models: General Policies for Zero-Shot Deployment in New Environments [26.66666135624716]
We present Robot Utility Models (RUMs), a framework for training and deploying zero-shot robot policies.
RUMs can generalize to new environments without any finetuning.
We train five utility models for opening cabinet doors, opening drawers, picking up napkins, picking up paper bags, and reorienting fallen objects.
arXiv Detail & Related papers (2024-09-09T17:59:50Z) - Scaling Cross-Embodied Learning: One Policy for Manipulation, Navigation, Locomotion and Aviation [49.03165169369552]
By training a single policy across many different kinds of robots, a robot learning method can leverage much broader and more diverse datasets.
We propose CrossFormer, a scalable and flexible transformer-based policy that can consume data from any embodiment.
We demonstrate that the same network weights can control vastly different robots, including single and dual arm manipulation systems, wheeled robots, quadcopters, and quadrupeds.
arXiv Detail & Related papers (2024-08-21T17:57:51Z) - AutoRT: Embodied Foundation Models for Large Scale Orchestration of Robotic Agents [109.3804962220498]
AutoRT is a system to scale up the deployment of operational robots in completely unseen scenarios with minimal human supervision.
We demonstrate AutoRT proposing instructions to over 20 robots across multiple buildings and collecting 77k real robot episodes via both teleoperation and autonomous robot policies.
We experimentally show that such "in-the-wild" data collected by AutoRT is significantly more diverse, and that AutoRT's use of LLMs allows for instruction following data collection robots that can align to human preferences.
arXiv Detail & Related papers (2024-01-23T18:45:54Z) - Scaling Robot Learning with Semantically Imagined Experience [21.361979238427722]
Recent advances in robot learning have shown promise in enabling robots to perform manipulation tasks.
One of the key contributing factors to this progress is the scale of robot data used to train the models.
We propose an alternative route and leverage text-to-image foundation models widely used in computer vision and natural language processing.
arXiv Detail & Related papers (2023-02-22T18:47:51Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
We present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties.
We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks.
arXiv Detail & Related papers (2022-12-13T18:55:15Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works.
However, learning a model that captures the dynamics of complex skills represents a major challenge.
We propose a method to augment the training set with observational data of other agents, such as humans.
arXiv Detail & Related papers (2019-12-30T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.