$π_{0.5}$: a Vision-Language-Action Model with Open-World Generalization
- URL: http://arxiv.org/abs/2504.16054v1
- Date: Tue, 22 Apr 2025 17:31:29 GMT
- Title: $π_{0.5}$: a Vision-Language-Action Model with Open-World Generalization
- Authors: Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Manuel Y. Galliker, Dibya Ghosh, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z. Ren, Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner, Quan Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, Ury Zhilinsky,
- Abstract summary: We describe a new model based on $pi_0.5$ that uses co-training on heterogeneous tasks to enable broad generalization.<n>We demonstrate for the first time that an end-to-end learning-enabled robotic system can perform long-horizon and dexterous manipulation skills.
- Score: 81.73746512639283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order for robots to be useful, they must perform practically relevant tasks in the real world, outside of the lab. While vision-language-action (VLA) models have demonstrated impressive results for end-to-end robot control, it remains an open question how far such models can generalize in the wild. We describe $\pi_{0.5}$, a new model based on $\pi_{0}$ that uses co-training on heterogeneous tasks to enable broad generalization. $\pi_{0.5}$\ uses data from multiple robots, high-level semantic prediction, web data, and other sources to enable broadly generalizable real-world robotic manipulation. Our system uses a combination of co-training and hybrid multi-modal examples that combine image observations, language commands, object detections, semantic subtask prediction, and low-level actions. Our experiments show that this kind of knowledge transfer is essential for effective generalization, and we demonstrate for the first time that an end-to-end learning-enabled robotic system can perform long-horizon and dexterous manipulation skills, such as cleaning a kitchen or bedroom, in entirely new homes.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Semantically Controllable Augmentations for Generalizable Robot Learning [40.89398799604755]
Generalization to unseen real-world scenarios for robot manipulation requires exposure to diverse datasets during training.
We propose a generative augmentation framework for semantically controllable augmentations and rapidly multiplying robot datasets.
arXiv Detail & Related papers (2024-09-02T05:25:34Z) - Programmatically Grounded, Compositionally Generalizable Robotic
Manipulation [35.12811184353626]
We show that the conventional pretraining-finetuning pipeline for integrating semantic representations entangles the learning of domain-specific action information.
We propose a modular approach to better leverage pretrained models by exploiting the syntactic and semantic structures of language instructions.
Our model successfully disentangles action and perception, translating to improved zero-shot and compositional generalization in a variety of manipulation behaviors.
arXiv Detail & Related papers (2023-04-26T20:56:40Z) - Open-World Object Manipulation using Pre-trained Vision-Language Models [72.87306011500084]
For robots to follow instructions from people, they must be able to connect the rich semantic information in human vocabulary.
We develop a simple approach, which leverages a pre-trained vision-language model to extract object-identifying information.
In a variety of experiments on a real mobile manipulator, we find that MOO generalizes zero-shot to a wide range of novel object categories and environments.
arXiv Detail & Related papers (2023-03-02T01:55:10Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
We present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties.
We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks.
arXiv Detail & Related papers (2022-12-13T18:55:15Z) - Learning Generalizable Robotic Reward Functions from "In-The-Wild" Human
Videos [59.58105314783289]
Domain-agnostic Video Discriminator (DVD) learns multitask reward functions by training a discriminator to classify whether two videos are performing the same task.
DVD can generalize by virtue of learning from a small amount of robot data with a broad dataset of human videos.
DVD can be combined with visual model predictive control to solve robotic manipulation tasks on a real WidowX200 robot in an unseen environment from a single human demo.
arXiv Detail & Related papers (2021-03-31T05:25:05Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works.
However, learning a model that captures the dynamics of complex skills represents a major challenge.
We propose a method to augment the training set with observational data of other agents, such as humans.
arXiv Detail & Related papers (2019-12-30T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.