論文の概要: Task-Specific Directions: Definition, Exploration, and Utilization in Parameter Efficient Fine-Tuning
- arxiv url: http://arxiv.org/abs/2409.01035v4
- Date: Mon, 21 Apr 2025 03:58:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-22 21:38:34.49773
- Title: Task-Specific Directions: Definition, Exploration, and Utilization in Parameter Efficient Fine-Tuning
- Title(参考訳): タスク特化方向:パラメータ効率の良い微調整における定義・探索・活用
- Authors: Chongjie Si, Zhiyi Shi, Shifan Zhang, Xiaokang Yang, Hanspeter Pfister, Wei Shen,
- Abstract要約: 大規模な言語モデルは、下流タスクで素晴らしいパフォーマンスを示すが、全てのパラメータを完全に微調整する場合は、リソース消費がかなり必要である。
本稿では,タスク固有の方向(TSD)を明確に定義するフレームワークを提案し,その特性と実用化の課題について検討する。
次に、微調整過程におけるTLDの影響を最大化する新しいアプローチであるLoRA-Dashを導入する。
- 参考スコア(独自算出の注目度): 65.31677646659895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models demonstrate impressive performance on downstream tasks, yet they require extensive resource consumption when fully fine-tuning all parameters. To mitigate this, Parameter Efficient Fine-Tuning (PEFT) strategies, such as LoRA, have been developed. In this paper, we delve into the concept of task-specific directions (TSDs), which are critical for transitioning large models from pretrained states to task-specific enhancements in PEFT. We propose a framework to clearly define these directions and explore their properties and practical utilization challenges. We then introduce a novel approach, LoRA-Dash, which aims to maximize the impact of TSDs during the fine-tuning process, thereby enhancing model performance on targeted tasks. Additionally, based on our exploration of TSD, we focus on an important issue in PEFT: the initialization of LoRA. While some works have pointed out the significance of initialization for LoRA's performance and proposed various strategies, these methods are often empirical and not task-specific. To address this issue, we propose LoRA-Init. Starting from TSD, we identify the directions that require the most adjustment during fine-tuning for downstream tasks. By initializing the matrices in LoRA with these directions, LoRA-Init significantly enhances LoRA's performance. Moreover, we can combine LoRA-Dash and LoRA-Init to create the final version of LoRA based on TSDs, which we refer to as LoRA-TSD. Extensive experiments have conclusively demonstrated the effectiveness of these methods, and in-depth analyses further reveal the underlying mechanisms behind their success.
- Abstract(参考訳): 大規模な言語モデルは、下流タスクで素晴らしいパフォーマンスを示すが、全てのパラメータを完全に微調整する際には、リソース消費がかなり必要である。
これを軽減するために、LoRAのようなパラメータ効率の良い細調整(PEFT)戦略が開発されている。
本稿では,タスク固有方向(TSD)の概念を探求し,事前訓練された状態からPEFTにおけるタスク固有方向への大きなモデル移行に不可欠である。
本稿では,これらの方向性を明確に定義し,その特性と実用化の課題を探求する枠組みを提案する。
そこで我々は,微調整過程におけるTSDの影響を最大化し,目標タスクにおけるモデル性能を向上させることを目的とした,新しいアプローチであるLoRA-Dashを導入する。
さらに、TSDの探索に基づき、PEFTにおける重要な課題であるLoRAの初期化に焦点を当てた。
いくつかの研究は、LoRAの性能の初期化の重要性を指摘し、様々な戦略を提案しているが、これらの手法はしばしば経験的であり、タスク固有のものではない。
この問題に対処するため,我々はLoRA-Initを提案する。
TSDから、下流タスクの微調整時に最も調整が必要な方向を特定する。
LoRAの行列をこれらの方向で初期化することで、LoRA-InitはLoRAの性能を大幅に向上させる。
さらに, LoRA-Dash と LoRA-Init を組み合わせることで,TLD をベースとした LoRA の最終バージョンを作成できる。
大規模な実験はこれらの手法の有効性を決定的に証明し、詳細な分析によりそれらの成功の背後にあるメカニズムをさらに明らかにした。
関連論文リスト
- LoRA-Based Continual Learning with Constraints on Critical Parameter Changes [7.634417409656999]
LoRAベースの連続学習は、下流の連続学習タスクで事前学習されたモデルを活用するための有望な道である。
本研究では,視力変換器(ViT)における最重要パラメータ行列の凍結について,事前タスクの学習に先立って提案する。
提案手法は,いくつかのよく知られた連続学習ベンチマークにおいて,最先端(SOTA)性能を実現することを示唆している。
論文 参考訳(メタデータ) (2025-04-18T02:08:19Z) - BeamLoRA: Beam-Constraint Low-Rank Adaptation [51.52097743781401]
Low-Rank Adaptation (LoRA) はパラメータ効率の良い微調整法として広く採用されている。
本研究では,各LoRAモジュールを,各ランクが潜在的サブソリューションに対応するビームとして概念化するビームロラを提案する。
論文 参考訳(メタデータ) (2025-02-19T10:33:22Z) - In-Context Meta LoRA Generation [61.690065588534296]
Low-rank Adaptation (LoRA) はタスク固有の微調整機能を示す。
In-Context Meta LoRA (ICM-LoRA) は,大規模言語モデルのタスク固有のカスタマイズを効率的に行う新しい手法である。
ICM-LoRAは、現在のパラメータ再構成法よりも正確なLoRAパラメータ再構成を可能にする。
論文 参考訳(メタデータ) (2025-01-29T13:12:01Z) - SD-LoRA: Scalable Decoupled Low-Rank Adaptation for Class Incremental Learning [73.93639228235622]
基礎モデルによる継続的な学習は、シーケンシャルなタスクに取り組むための事前トレーニング中に得られた豊富な知識を活用するための有望なパラダイムとして現れてきた。
既存のプロンプトベースおよびローランク適応ベース(LoRAベース)メソッドでは、プロンプト/ローラプールの拡張や、以前のタスクのサンプルの保持がしばしば必要である。
クラスインクリメンタル学習のためのスケーラブルデカップリングLoRA(SD-LoRA)を提案する。
論文 参考訳(メタデータ) (2025-01-22T20:00:41Z) - MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning [74.43869839954168]
マルチタスク学習能力を大幅に向上させながら、低ランク適応の利点を保ちながら、MTL-LoRAを提案する。
MTL-LoRAは、タスク固有の情報を識別するタスク適応パラメータを追加することでLoRAを強化する。
このアプローチにより、汎用コーパス上で事前訓練された大規模言語モデル(LLM)が、限られた数のトレーニング可能なパラメータで異なるターゲットタスクドメインに適応できる。
論文 参考訳(メタデータ) (2024-10-12T08:32:26Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
本研究では,事前学習した拡散モデルにおけるパラメータの重要性について検討する。
本稿では,これらの非効率パラメータをフル活用するための新しいモデル微調整法を提案する。
本手法は,下流アプリケーションにおける事前学習モデルの生成能力を向上する。
論文 参考訳(メタデータ) (2024-09-10T16:44:47Z) - See Further for Parameter Efficient Fine-tuning by Standing on the Shoulders of Decomposition [56.87609859444084]
パラメータ効率の細かいチューニング(PEFT)は、パラメータの選択したサブセットを最適化し、残りを固定し、計算とストレージのオーバーヘッドを大幅に削減することに焦点を当てている。
分解の観点からそれらを分離することで、すべてのアプローチを統一する第一歩を踏み出します。
本稿では,PEFT技術の性能向上を目的とした,単純かつ効果的なフレームワークとともに,新しい2つのPEFT手法を提案する。
論文 参考訳(メタデータ) (2024-07-07T15:44:42Z) - DoRA: Enhancing Parameter-Efficient Fine-Tuning with Dynamic Rank Distribution [28.589498108609202]
Low-Rank Adaptation (LoRA) は、ウェイト行列の差分パラメータ予算要件を無視したバイパスフレームワークに依存している。
DoRAは、高ランクのLoRA層を構造化シングルランクコンポーネントに分解し、パラメータ予算の動的プルーニングを可能にする。
実験結果から,LORAやフルモデルファインチューニングと比較して,DoRAの競争性能が向上することが示された。
論文 参考訳(メタデータ) (2024-05-27T17:02:27Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
強化学習(RL)を用いた視覚言語モデル(VLM)を微調整するアルゴリズムフレームワークを提案する。
我々のフレームワークはタスク記述を提供し、次にVLMにチェーン・オブ・シント(CoT)推論を生成するよう促す。
提案手法は,VLMエージェントの様々なタスクにおける意思決定能力を向上させる。
論文 参考訳(メタデータ) (2024-05-16T17:50:19Z) - HydraLoRA: An Asymmetric LoRA Architecture for Efficient Fine-Tuning [27.440300738911706]
大規模言語モデルへの微調整による新しいタスクへの適応は、導入によってより効率的になった。
LoRAのようなPEFT(Efficient Fine-Tuning)技術は、フル微調整に比べて性能が劣ることが多い。
ドメインの専門知識を必要としない非対称構造を持つLoRAフレームワークであるHydraLoRAを開発した。
論文 参考訳(メタデータ) (2024-04-30T04:01:09Z) - ALoRA: Allocating Low-Rank Adaptation for Fine-tuning Large Language Models [8.251547772610301]
低ランク適応 (LoRA) の方法論を、低ランク適応 (AloRA) と呼ぶ革新的なアプローチに拡張する。
まず,各ランクの重要度を効果的に推定できる新しい手法であるAB-LoRAを提案する。
第2に、AB-LoRAによって導かれ、我々は徐々にLoRAのランクに多く負の影響を及ぼし、高いランクを必要とする重要なトランスフォーマーモジュールにローラの予算を割り当てる。
論文 参考訳(メタデータ) (2024-03-24T15:09:55Z) - LoraRetriever: Input-Aware LoRA Retrieval and Composition for Mixed
Tasks in the Wild [76.67343971195267]
Low-Rank Adaptation (LoRA)は、大規模言語モデル(LLM)を微調整するための効率的なソリューションを提供する。
LoraRetrieverは、入力プロンプトに従って複数のLoRAを適応的に検索して構成する検索テーマ構成フレームワークである。
実験結果から、LoraRetrieverは一貫してベースラインを上回っていることが示唆された。
論文 参考訳(メタデータ) (2024-02-15T15:02:46Z) - LoRA-drop: Efficient LoRA Parameter Pruning based on Output Evaluation [27.123271324468657]
Low-Rank Adaptation (LoRA)は、現在最も一般的に使われている言語である。
効率的な微細チューニング法(PEFT)。
各レイヤの補助パラメータを導入し、限られたコンピューティングリソースの下で事前訓練されたモデルを微調整する。
しかし、より大きなモデルにスケールアップする際には、依然としてリソース消費の課題に直面している。
論文 参考訳(メタデータ) (2024-02-12T15:34:56Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETALは、一意のモード近似技術によって達成される全パラメータの0.5%しか必要とせず、トレーニングプロセスに革命をもたらす。
実験の結果,PETALは現状の手法をほとんどのシナリオで上回るだけでなく,完全な微調整モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-16T17:13:08Z) - Tied-Lora: Enhancing parameter efficiency of LoRA with weight tying [6.172790376076545]
低ランク適応(LoRA)のパラメータ効率を高めるために、ウェイトタイリングと選択的トレーニングを活用する新しいパラダイムであるTied-LoRAを導入する。
本稿では,パラメータトレーニングと凍結,およびウェイトタイリングを併用して,パラメータの最適トレードオフとトレーニング可能なパラメータの数を推定する。
論文 参考訳(メタデータ) (2023-11-16T05:29:39Z) - Development and Validation of an AI-Driven Model for the La Rance Tidal
Barrage: A Generalisable Case Study [2.485182034310303]
斬新なパラメトリゼーションと深層強化学習技術を用いて,ラランス潮流のAI駆動モデル表現を開発した。
実験により, 構築した干潟防波堤に対する第1次干潟域構造(TRS)モデルの有効性を検証した。
論文 参考訳(メタデータ) (2022-02-10T22:02:52Z) - Attention-Based Model and Deep Reinforcement Learning for Distribution
of Event Processing Tasks [0.0]
イベント処理は、動的でレスポンシブなモノのインターネット(IoT)の基盤である
本稿では,タスクを公平に分散するためのディープラーニングの利用について検討する。
効率的な負荷分散ソリューションを生成するために,注目に基づくニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2021-12-07T17:16:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。