Pre-Trained Language Models for Keyphrase Prediction: A Review
- URL: http://arxiv.org/abs/2409.01087v1
- Date: Mon, 2 Sep 2024 09:15:44 GMT
- Title: Pre-Trained Language Models for Keyphrase Prediction: A Review
- Authors: Muhammad Umair, Tangina Sultana, Young-Koo Lee,
- Abstract summary: Keyphrase Prediction (KP) is essential for identifying keyphrases in a document that can summarize its content.
Recent Natural Language Processing advances have developed more efficient KP models using deep learning techniques.
This paper extensively examines the topic of pre-trained language models for keyphrase prediction (PLM-KP)
- Score: 2.7869482272876622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Keyphrase Prediction (KP) is essential for identifying keyphrases in a document that can summarize its content. However, recent Natural Language Processing (NLP) advances have developed more efficient KP models using deep learning techniques. The limitation of a comprehensive exploration jointly both keyphrase extraction and generation using pre-trained language models spotlights a critical gap in the literature, compelling our survey paper to bridge this deficiency and offer a unified and in-depth analysis to address limitations in previous surveys. This paper extensively examines the topic of pre-trained language models for keyphrase prediction (PLM-KP), which are trained on large text corpora via different learning (supervisor, unsupervised, semi-supervised, and self-supervised) techniques, to provide respective insights into these two types of tasks in NLP, precisely, Keyphrase Extraction (KPE) and Keyphrase Generation (KPG). We introduce appropriate taxonomies for PLM-KPE and KPG to highlight these two main tasks of NLP. Moreover, we point out some promising future directions for predicting keyphrases.
Related papers
- MetaKP: On-Demand Keyphrase Generation [52.48698290354449]
We introduce on-demand keyphrase generation, a novel paradigm that requires keyphrases that conform to specific high-level goals or intents.
We present MetaKP, a large-scale benchmark comprising four datasets, 7500 documents, and 3760 goals across news and biomedical domains with human-annotated keyphrases.
We demonstrate the potential of our method to serve as a general NLP infrastructure, exemplified by its application in epidemic event detection from social media.
arXiv Detail & Related papers (2024-06-28T19:02:59Z) - Pre-trained Language Models for Keyphrase Generation: A Thorough
Empirical Study [76.52997424694767]
We present an in-depth empirical study of keyphrase extraction and keyphrase generation using pre-trained language models.
We show that PLMs have competitive high-resource performance and state-of-the-art low-resource performance.
Further results show that in-domain BERT-like PLMs can be used to build strong and data-efficient keyphrase generation models.
arXiv Detail & Related papers (2022-12-20T13:20:21Z) - A Survey of Knowledge Enhanced Pre-trained Language Models [78.56931125512295]
We present a comprehensive review of Knowledge Enhanced Pre-trained Language Models (KE-PLMs)
For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG) and rule knowledge.
The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods.
arXiv Detail & Related papers (2022-11-11T04:29:02Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
We propose a new pre-training objective, Sparse Latent Typing, which enables the model to sparsely extract sentence-level keywords with diverse latent types.
Experimental results show that our model is able to learn interpretable latent type categories in a self-supervised manner without using any external knowledge.
arXiv Detail & Related papers (2022-10-23T00:37:08Z) - Representation Learning for Resource-Constrained Keyphrase Generation [78.02577815973764]
We introduce salient span recovery and salient span prediction as guided denoising language modeling objectives.
We show the effectiveness of the proposed approach for low-resource and zero-shot keyphrase generation.
arXiv Detail & Related papers (2022-03-15T17:48:04Z) - Unsupervised Keyphrase Extraction via Interpretable Neural Networks [27.774524511005172]
Keyphrases that are most useful for predicting the topic of a text are important keyphrases.
InSPECT is a self-explaining neural framework for identifying influential keyphrases.
We show that INSPECT achieves state-of-the-art results in unsupervised key extraction across four diverse datasets.
arXiv Detail & Related papers (2022-03-15T04:30:47Z) - A Survey of Knowledge Enhanced Pre-trained Models [28.160826399552462]
We refer to pre-trained language models with knowledge injection as knowledge-enhanced pre-trained language models (KEPLMs)
These models demonstrate deep understanding and logical reasoning and introduce interpretability.
arXiv Detail & Related papers (2021-10-01T08:51:58Z) - Learning to Selectively Learn for Weakly-supervised Paraphrase
Generation [81.65399115750054]
We propose a novel approach to generate high-quality paraphrases with weak supervision data.
Specifically, we tackle the weakly-supervised paraphrase generation problem by:.
obtaining abundant weakly-labeled parallel sentences via retrieval-based pseudo paraphrase expansion.
We demonstrate that our approach achieves significant improvements over existing unsupervised approaches, and is even comparable in performance with supervised state-of-the-arts.
arXiv Detail & Related papers (2021-09-25T23:31:13Z) - UniKeyphrase: A Unified Extraction and Generation Framework for
Keyphrase Prediction [20.26899340581431]
Keyphrase Prediction task aims at predicting several keyphrases that can summarize the main idea of the given document.
Mainstream KP methods can be categorized into purely generative approaches and integrated models with extraction and generation.
We propose UniKeyphrase, a novel end-to-end learning framework that jointly learns to extract and generate keyphrases.
arXiv Detail & Related papers (2021-06-09T07:09:51Z) - Keyphrase Prediction With Pre-trained Language Model [16.06425973336514]
We propose to divide the keyphrase prediction into two subtasks, i.e., present keyphrase extraction (PKE) and absent keyphrase generation (AKG)
For PKE, we tackle this task as a sequence labeling problem with the pre-trained language model BERT.
For AKG, we introduce a Transformer-based architecture, which fully integrates the present keyphrase knowledge learned from PKE by the fine-tuned BERT.
arXiv Detail & Related papers (2020-04-22T09:35:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.