FMRFT: Fusion Mamba and DETR for Query Time Sequence Intersection Fish Tracking
- URL: http://arxiv.org/abs/2409.01148v2
- Date: Fri, 11 Oct 2024 03:03:04 GMT
- Title: FMRFT: Fusion Mamba and DETR for Query Time Sequence Intersection Fish Tracking
- Authors: Mingyuan Yao, Yukang Huo, Qingbin Tian, Jiayin Zhao, Xiao Liu, Ruifeng Wang, Lin Xue, Haihua Wang,
- Abstract summary: This paper establishes a complex multi-scenario sturgeon tracking dataset.
It introduces the FMRFT model, a real-time end-to-end fish tracking solution.
The model incorporates the low video memory consumption Mamba In Mamba architecture.
- Score: 3.599033310931609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early detection of abnormal fish behavior caused by disease or hunger can be achieved through fish tracking using deep learning techniques, which holds significant value for industrial aquaculture. However, underwater reflections and some reasons with fish, such as the high similarity, rapid swimming caused by stimuli and mutual occlusion bring challenges to multi-target tracking of fish. To address these challenges, this paper establishes a complex multi-scenario sturgeon tracking dataset and introduces the FMRFT model, a real-time end-to-end fish tracking solution. The model incorporates the low video memory consumption Mamba In Mamba (MIM) architecture, which facilitates multi-frame temporal memory and feature extraction, thereby addressing the challenges to track multiple fish across frames. Additionally, the FMRFT model with the Query Time Sequence Intersection (QTSI) module effectively manages occluded objects and reduces redundant tracking frames using the superior feature interaction and prior frame processing capabilities of RT-DETR. This combination significantly enhances the accuracy and stability of fish tracking. Trained and tested on the dataset, the model achieves an IDF1 score of 90.3% and a MOTA accuracy of 94.3%. Experimental results show that the proposed FMRFT model effectively addresses the challenges of high similarity and mutual occlusion in fish populations, enabling accurate tracking in factory farming environments.
Related papers
- A method for detecting dead fish on large water surfaces based on improved YOLOv10 [0.6874745415692134]
Dead fish can cause significant issues such as water quality deterioration, ecosystem damage, and disease transmission.
This paper proposes an end-to-end detection model built upon an enhanced YOLOv10 framework.
arXiv Detail & Related papers (2024-08-31T08:43:37Z) - MambaVT: Spatio-Temporal Contextual Modeling for robust RGB-T Tracking [51.28485682954006]
We propose a pure Mamba-based framework (MambaVT) to fully exploit intrinsic-temporal contextual modeling for robust visible-thermal tracking.
Specifically, we devise the long-range cross-frame integration component to globally adapt to target appearance variations.
Experiments show the significant potential of vision Mamba for RGB-T tracking, with MambaVT achieving state-of-the-art performance on four mainstream benchmarks.
arXiv Detail & Related papers (2024-08-15T02:29:00Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - FishMOT: A Simple and Effective Method for Fish Tracking Based on IoU
Matching [11.39414015803651]
FishMOT is a novel fish tracking approach combining object detection and objectoU matching.
The method exhibits excellent robustness and generalizability for varying environments and fish numbers.
arXiv Detail & Related papers (2023-09-06T13:16:41Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
We investigate how the pre-training loss, supervised data amount, and augmented data amount influence the reasoning performances of a supervised LLM.
We find that rejection samples from multiple models push LLaMA-7B to an accuracy of 49.3% on GSM8K which outperforms the supervised fine-tuning (SFT) accuracy of 35.9% significantly.
arXiv Detail & Related papers (2023-08-03T15:34:01Z) - DeepSeaNet: Improving Underwater Object Detection using EfficientDet [0.0]
This project involves implementing and evaluating various object detection models on an annotated underwater dataset.
The dataset comprises annotated image sequences of fish, crabs, starfish, and other aquatic animals captured in Limfjorden water with limited visibility.
I compare the results of YOLOv3 (31.10% mean Average Precision (mAP)), YOLOv4 (83.72% mAP), YOLOv5 (97.6%), YOLOv8 (98.20%), EfficientDet (98.56% mAP) and Detectron2 (95.20% mAP) on the same dataset.
arXiv Detail & Related papers (2023-05-26T13:41:35Z) - Multi-Object Tracking by Iteratively Associating Detections with Uniform
Appearance for Trawl-Based Fishing Bycatch Monitoring [22.228127377617028]
The aim of in-trawl catch monitoring for use in fishing operations is to detect, track and classify fish targets in real-time from video footage.
We propose a novel MOT method, built upon an existing observation-centric tracking algorithm, by adopting a new iterative association step.
Our method offers improved performance in tracking targets with uniform appearance and outperforms state-of-the-art techniques on our underwater fish datasets as well as the MOT17 dataset.
arXiv Detail & Related papers (2023-04-10T18:55:10Z) - Automatic Controlling Fish Feeding Machine using Feature Extraction of
Nutriment and Ripple Behavior [0.0]
We propose automatic controlling fish feeding machine based on computer vision using combination of counting nutriments and estimating ripple behavior.
Based on the number of nutriments and ripple behavior, we can control fish feeding machine which consistently performs well in real environment.
arXiv Detail & Related papers (2022-08-15T05:52:37Z) - FetReg: Placental Vessel Segmentation and Registration in Fetoscopy
Challenge Dataset [57.30136148318641]
Fetoscopy laser photocoagulation is a widely used procedure for the treatment of Twin-to-Twin Transfusion Syndrome (TTTS)
This may lead to increased procedural time and incomplete ablation, resulting in persistent TTTS.
Computer-assisted intervention may help overcome these challenges by expanding the fetoscopic field of view through video mosaicking and providing better visualization of the vessel network.
We present a large-scale multi-centre dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms for the fetal environment with a focus on creating drift-free mosaics from long duration fetoscopy videos.
arXiv Detail & Related papers (2021-06-10T17:14:27Z) - Movement Tracks for the Automatic Detection of Fish Behavior in Videos [63.85815474157357]
We offer a dataset of sablefish (Anoplopoma fimbria) startle behaviors in underwater videos, and investigate the use of deep learning (DL) methods for behavior detection on it.
Our proposed detection system identifies fish instances using DL-based frameworks, determines trajectory tracks, derives novel behavior-specific features, and employs Long Short-Term Memory (LSTM) networks to identify startle behavior in sablefish.
arXiv Detail & Related papers (2020-11-28T05:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.