Balancing Performance and Efficiency: A Multimodal Large Language Model Pruning Method based Image Text Interaction
- URL: http://arxiv.org/abs/2409.01162v1
- Date: Mon, 2 Sep 2024 10:49:10 GMT
- Title: Balancing Performance and Efficiency: A Multimodal Large Language Model Pruning Method based Image Text Interaction
- Authors: Gaotong Yu, Yi Chen, Jian Xu,
- Abstract summary: multimodal large language models (MM-LLMs) have achieved great success in many multimodal tasks, but their high computational costs limit their further promotion and application.
We studied the visual tokens of MM-LLMs and designed a dynamic pruning algorithm to address this issue.
Our proposed method can achieve performance that competes with the original performance when using an average of 22% of the original token quantity.
- Score: 6.467840081978855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, multimodal large language models (MM-LLMs) have achieved great success in many multimodal tasks, but their high computational costs limit their further promotion and application. In the MM-LLMs framework, the main computational consumption step is the processing of concatenated text and visual tokens at the LLM layer. The length of the input token for LLM directly affects the overall training and inference efficiency. In response to this issue, we further studied the visual tokens of MM-LLMs. We found that the similarity between visual and CLS tokens in the visual encoder follows a long-tail distribution. In other words, only a few visual tokens are highly similar to CLS tokens. Therefore, we designed a dynamic pruning algorithm to address this issue. Firstly, for different input samples, we search for the inflection point of their visual CLS token similarity curve and use it as the corresponding segmentation point to trim the visual markers. This process mainly reduces the output of the visual encoder to accelerate the model. Then, in the LLM layer, the concatenated visual text tokens are pruned for the second time. During this process, due to the interaction between visual and textual features, visual and textual tokens with low text correlation are further filtered, achieving a balance between efficiency and performance. The results on multiple datasets show that our proposed method can achieve performance that competes with the original performance when using an average of 22% of the original token quantity. Our source code will be made publicly available following acceptance.
Related papers
- Inference Optimal VLMs Need Only One Visual Token but Larger Models [54.01228554126122]
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks.
VLMs are often constrained by high latency during inference due to substantial compute required to process the large number of input tokens.
We take some initial steps towards building approaches tailored for high token compression settings.
arXiv Detail & Related papers (2024-11-05T18:54:21Z) - Retrieval Replace Reduction: An effective visual token reduction method via semantic match [32.33892531885448]
We introduce textbfTRSM (textbfToken textbfReduction via textbfSemantic textbfMatch), which effectively reduces the number of visual tokens without compromising MLLM performance.
Inspired by how humans process multimodal tasks, TRSM leverages semantic information from one modality to match relevant semantics in another, reducing the number of visual tokens.
Based on experimental results, our approach compresses the visual tokens by 20%, achieving comparable performance across diverse visual question-answering and reasoning tasks.
arXiv Detail & Related papers (2024-10-09T07:13:22Z) - Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See [37.7015406019386]
Multimodal Large Language Models (MLLMs) treat visual tokens from visual encoders as text tokens.
As token counts grow, the quadratic scaling of computation in LLMs introduces an efficiency bottleneck.
In this study, we investigate the redundancy in visual computation at both the parameter and computational pattern levels within LLaVA.
arXiv Detail & Related papers (2024-10-08T16:13:24Z) - VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation [66.00245701441547]
We introduce a novel approach to reduce vision compute by leveraging redundant vision tokens "skipping layers" rather than decreasing the number of vision tokens.
Our method, VideoLLM-MoD, is inspired by mixture-of-depths LLMs and addresses the challenge of numerous vision tokens in long-term or streaming video.
arXiv Detail & Related papers (2024-08-29T17:21:58Z) - ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models [73.34709921061928]
We propose a training-free method to inject visual referring into Multimodal Large Language Models (MLLMs)
We observe the relationship between text prompt tokens and visual tokens in MLLMs, where attention layers model the connection between them.
We optimize a learnable visual token based on an energy function, enhancing the strength of referential regions in the attention map.
arXiv Detail & Related papers (2024-07-31T11:40:29Z) - TokenPacker: Efficient Visual Projector for Multimodal LLM [37.1071749188282]
The visual projector serves as an essential bridge between the visual encoder and the Large Language Model (LLM)
We propose a novel visual projector, which adopts a coarse-to-fine scheme to inject the enriched characteristics to generate the condensed visual tokens.
Our approach compresses the visual tokens by 75%89%, while achieves comparable or even better performance across diverse benchmarks.
arXiv Detail & Related papers (2024-07-02T16:10:55Z) - Towards Semantic Equivalence of Tokenization in Multimodal LLM [149.11720372278273]
Vision tokenization is essential for semantic alignment between vision and language.
This paper proposes a novel dynamic Semantic-Equivalent Vision Tokenizer (SeTok)
SeTok groups visual features into semantic units via a dynamic clustering algorithm.
The resulting vision tokens effectively preserve semantic integrity and capture both low-frequency and high-frequency visual features.
arXiv Detail & Related papers (2024-06-07T17:55:43Z) - Boosting Multimodal Large Language Models with Visual Tokens Withdrawal for Rapid Inference [59.91176945361035]
We introduce Visual Tokens Withdrawal (VTW), a plug-and-play module to boost MLLMs for rapid inference.
Our approach is inspired by two intriguing phenomena we have observed.
Our VTW approach can cut computational overhead by over 40% across diverse multimodal tasks while maintaining performance.
arXiv Detail & Related papers (2024-05-09T14:38:53Z) - LLaVA-PruMerge: Adaptive Token Reduction for Efficient Large Multimodal Models [35.88374542519597]
Large Multimodal Models (LMMs) have shown significant visual reasoning capabilities by connecting a visual encoder and a large language model.
Recent LMMs incorporate more complex visual inputs, such as high-resolution images and videos, which further increases the number of visual tokens significantly.
We propose PruMerge, a novel adaptive visual token reduction strategy that significantly reduces the number of visual tokens without compromising the performance of LMMs.
arXiv Detail & Related papers (2024-03-22T17:59:52Z) - Leveraging per Image-Token Consistency for Vision-Language Pre-training [52.825150269820696]
Cross-modal masked language modeling (CMLM) is insufficient for vision-language pre-training.
We propose EPIC (lEveraging Per Image-Token Consistency for vision-language pre-training)
The proposed EPIC method is easily combined with pre-training methods.
arXiv Detail & Related papers (2022-11-20T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.