InternVL-X: Advancing and Accelerating InternVL Series with Efficient Visual Token Compression
- URL: http://arxiv.org/abs/2503.21307v1
- Date: Thu, 27 Mar 2025 09:31:35 GMT
- Title: InternVL-X: Advancing and Accelerating InternVL Series with Efficient Visual Token Compression
- Authors: Dongchen Lu, Yuyao Sun, Zilu Zhang, Leping Huang, Jianliang Zeng, Mao Shu, Huo Cao,
- Abstract summary: We propose InternVL-X, which outperforms the InternVL model in both performance and efficiency.<n>By utilizing 20% or fewer visual tokens, InternVL-X achieves state-of-the-art performance on 7 public MLLM benchmarks, and improves the average metric by 2.34% across 12 tasks.
- Score: 1.8893427856534721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most multimodal large language models (MLLMs) treat visual tokens as "a sequence of text", integrating them with text tokens into a large language model (LLM). However, a great quantity of visual tokens significantly increases the demand for computational resources and time. In this paper, we propose InternVL-X, which outperforms the InternVL model in both performance and efficiency by incorporating three visual token compression methods. First, we propose a novel vision-language projector, PVTC. This component integrates adjacent visual embeddings to form a local query and utilizes the transformed CLS token as a global query, then performs point-to-region cross-attention through these local and global queries to more effectively convert visual features. Second, we present a layer-wise visual token compression module, LVTC, which compresses tokens in the LLM shallow layers and then expands them through upsampling and residual connections in the deeper layers. This significantly enhances the model computational efficiency. Futhermore, we propose an efficient high resolution slicing method, RVTC, which dynamically adjusts the number of visual tokens based on image area or length filtering. RVTC greatly enhances training efficiency with only a slight reduction in performance. By utilizing 20% or fewer visual tokens, InternVL-X achieves state-of-the-art performance on 7 public MLLM benchmarks, and improves the average metric by 2.34% across 12 tasks.
Related papers
- DyMU: Dynamic Merging and Virtual Unmerging for Efficient VLMs [124.52164183968145]
We present DyMU, an efficient, training-free framework that reduces the computational burden of vision-language models (VLMs)
Our approach comprises two key components. First, Dynamic Token Merging (DToMe) reduces the number of visual token embeddings by merging similar tokens based on image complexity.
Second, Virtual Token Unmerging (VTU) simulates the expected token sequence for large language models (LLMs) by efficiently reconstructing the attention dynamics of a full sequence.
arXiv Detail & Related papers (2025-04-23T18:38:18Z) - FCoT-VL:Advancing Text-oriented Large Vision-Language Models with Efficient Visual Token Compression [16.53645461974695]
Current training-free visual token compression methods exhibit serious performance degradation in tasks involving high-resolution images.<n>We propose an efficient visual token compression framework for text-oriented Vision Large Language Models (VLLMs) in high-resolution scenarios.<n>Our approach significantly reduces computational overhead while outperforming the baselines across a range of text-oriented benchmarks.
arXiv Detail & Related papers (2025-02-22T16:05:33Z) - RedundancyLens: Revealing and Exploiting Visual Token Processing Redundancy for Efficient Decoder-Only MLLMs [38.34856927170692]
We propose a training-free framework for analyzing trained Multimodal Large Language Model (MLLM)<n>It consists of Probe-Activated Dynamic FFN and Hollow Attention, which enable adjustable reductions in computations for visual tokens.<n>Experiments demonstrate substantial, structured, and clustered redundancy unique to decoder-only MLLMs.
arXiv Detail & Related papers (2025-01-31T11:09:16Z) - [CLS] Token Tells Everything Needed for Training-free Efficient MLLMs [66.5266435598799]
Multi-language Large Language Models (MLLMs) have recently demonstrated strong performance across a wide range of vision tasks.
However, their efficient deployment remains a substantial challenge due to high computational costs and memory requirements.
We introduce a simple yet effective method for train-free visual compression, called VTC- compression.
arXiv Detail & Related papers (2024-12-08T05:29:39Z) - Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters [54.01228554126122]
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks.
To reduce inference costs, one can either downsize the Large Language Models (LLMs) or reduce the number of input tokens needed to represent the image.
We take the first steps toward designing token compression algorithms tailored for high-compression settings.
arXiv Detail & Related papers (2024-11-05T18:54:21Z) - Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See [37.7015406019386]
Multimodal Large Language Models (MLLMs) treat visual tokens from visual encoders as text tokens.<n>As token counts grow, the quadratic scaling of computation in LLMs introduces an efficiency bottleneck.<n>In this study, we investigate the redundancy in visual computation at both the parameter and computational pattern levels within LLaVA.
arXiv Detail & Related papers (2024-10-08T16:13:24Z) - Sparsity Meets Similarity: Leveraging Long-Tail Distribution for Dynamic Optimized Token Representation in Multimodal Large Language Models [6.467840081978855]
multimodal large language models (MM-LLMs) have achieved significant success in various tasks.<n>Main computational burden arises from processingd text and visual tokens.<n>We propose a dynamic pruning algorithm that identifies the inflection point in the visual CLS token similarity curve.
arXiv Detail & Related papers (2024-09-02T10:49:10Z) - VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation [66.00245701441547]
We introduce a novel approach to reduce vision compute by leveraging redundant vision tokens "skipping layers" rather than decreasing the number of vision tokens.
Our method, VideoLLM-MoD, is inspired by mixture-of-depths LLMs and addresses the challenge of numerous vision tokens in long-term or streaming video.
arXiv Detail & Related papers (2024-08-29T17:21:58Z) - TokenPacker: Efficient Visual Projector for Multimodal LLM [37.1071749188282]
The visual projector serves as an essential bridge between the visual encoder and the Large Language Model (LLM)
We propose a novel visual projector, which adopts a coarse-to-fine scheme to inject the enriched characteristics to generate the condensed visual tokens.
Our approach compresses the visual tokens by 75%89%, while achieves comparable or even better performance across diverse benchmarks.
arXiv Detail & Related papers (2024-07-02T16:10:55Z) - Towards Semantic Equivalence of Tokenization in Multimodal LLM [149.11720372278273]
Vision tokenization is essential for semantic alignment between vision and language.<n>This paper proposes a novel dynamic Semantic-Equivalent Vision Tokenizer (SeTok)<n>SeTok groups visual features into semantic units via a dynamic clustering algorithm.<n>The resulting vision tokens effectively preserve semantic integrity and capture both low-frequency and high-frequency visual features.
arXiv Detail & Related papers (2024-06-07T17:55:43Z) - An Image is Worth 1/2 Tokens After Layer 2: Plug-and-Play Inference Acceleration for Large Vision-Language Models [65.37846460916042]
We find out that the attention computation over visual tokens is of extreme inefficiency in the deep layers of popular LVLMs.
We introduce FastV, a versatile plug-and-play method designed to optimize computational efficiency.
arXiv Detail & Related papers (2024-03-11T14:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.