SSD4Rec: A Structured State Space Duality Model for Efficient Sequential Recommendation
- URL: http://arxiv.org/abs/2409.01192v2
- Date: Thu, 16 Jan 2025 08:04:43 GMT
- Title: SSD4Rec: A Structured State Space Duality Model for Efficient Sequential Recommendation
- Authors: Haohao Qu, Yifeng Zhang, Liangbo Ning, Wenqi Fan, Qing Li,
- Abstract summary: We propose a novel generic and efficient sequential recommendation backbone, SSD4Rec.
SSD4Rec marks the variable- and long-length item sequences with sequence registers and processes the item representations with bidirectional Structured State Space Duality (SSD) blocks.
Our model achieves state-of-the-art performance while maintaining near-linear scalability with user sequence length.
- Score: 18.537426536491203
- License:
- Abstract: Sequential recommendation methods are crucial in modern recommender systems for their remarkable capability to understand a user's changing interests based on past interactions. However, a significant challenge faced by current methods (e.g., RNN- or Transformer-based models) is to effectively and efficiently capture users' preferences by modeling long behavior sequences, which impedes their various applications like short video platforms where user interactions are numerous. Recently, an emerging architecture named Mamba, built on state space models (SSM) with efficient hardware-aware designs, has showcased the tremendous potential for sequence modeling, presenting a compelling avenue for addressing the challenge effectively. Inspired by this, we propose a novel generic and efficient sequential recommendation backbone, SSD4Rec, which explores the seamless adaptation of Mamba for sequential recommendations. Specifically, SSD4Rec marks the variable- and long-length item sequences with sequence registers and processes the item representations with bidirectional Structured State Space Duality (SSD) blocks. This not only allows for hardware-aware matrix multiplication but also empowers outstanding capabilities in variable-length and long-range sequence modeling. Extensive evaluations on four benchmark datasets demonstrate that the proposed model achieves state-of-the-art performance while maintaining near-linear scalability with user sequence length. Our code is publicly available at https://github.com/ZhangYifeng1995/SSD4Rec.
Related papers
- SIGMA: Selective Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.
We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.
Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - Semantic Codebook Learning for Dynamic Recommendation Models [55.98259490159084]
Dynamic sequential recommendation (DSR) can generate model parameters based on user behavior to improve personalization of sequential recommendation.
It faces the challenges of large parameter search space and sparse and noisy user-item interactions, which reduces the applicability of the generated model parameters.
The Semantic Codebook Learning for Dynamic Recommendation Models (SOLID) framework presents a significant advancement in DSR by effectively tackling these challenges.
arXiv Detail & Related papers (2024-07-31T19:25:25Z) - MaTrRec: Uniting Mamba and Transformer for Sequential Recommendation [6.74321828540424]
Sequential recommendation systems aim to provide personalized recommendations by analyzing dynamic preferences and dependencies within user behavior sequences.
Inspired by the State Space Model (SSM)representative model, Mamba, we find that Mamba's recommendation effectiveness is limited in short interaction sequences.
We propose a new model, MaTrRec, which combines the strengths of Mamba and Transformer.
arXiv Detail & Related papers (2024-07-27T12:07:46Z) - LongVQ: Long Sequence Modeling with Vector Quantization on Structured Memory [63.41820940103348]
Self-attention mechanism's computational cost limits its practicality for long sequences.
We propose a new method called LongVQ to compress the global abstraction as a length-fixed codebook.
LongVQ effectively maintains dynamic global and local patterns, which helps to complement the lack of long-range dependency issues.
arXiv Detail & Related papers (2024-04-17T08:26:34Z) - Mamba: Linear-Time Sequence Modeling with Selective State Spaces [31.985243136674146]
Foundation models are almost universally based on the Transformer architecture and its core attention module.
We identify that a key weakness of such models is their inability to perform content-based reasoning.
We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even blocks (Mamba)
As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics.
arXiv Detail & Related papers (2023-12-01T18:01:34Z) - MISSRec: Pre-training and Transferring Multi-modal Interest-aware
Sequence Representation for Recommendation [61.45986275328629]
We propose MISSRec, a multi-modal pre-training and transfer learning framework for sequential recommendation.
On the user side, we design a Transformer-based encoder-decoder model, where the contextual encoder learns to capture the sequence-level multi-modal user interests.
On the candidate item side, we adopt a dynamic fusion module to produce user-adaptive item representation.
arXiv Detail & Related papers (2023-08-22T04:06:56Z) - Sparse Attentive Memory Network for Click-through Rate Prediction with
Long Sequences [10.233015715433602]
We propose a Sparse Attentive Memory network for long sequential user behavior modeling.
SAM supports efficient training and real-time inference for user behavior sequences with lengths on the scale of thousands.
SAM is successfully deployed on one of the largest international E-commerce platforms.
arXiv Detail & Related papers (2022-08-08T10:11:46Z) - Efficiently Modeling Long Sequences with Structured State Spaces [15.456254157293836]
We propose a new sequence model based on a new parameterization for the fundamental state space model.
S4 achieves strong empirical results across a diverse range of established benchmarks, including (i) 91% accuracy on sequential CIFAR-10 with no data augmentation or auxiliary losses, on par with a larger 2-D ResNet.
arXiv Detail & Related papers (2021-10-31T03:32:18Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - Dynamic Memory based Attention Network for Sequential Recommendation [79.5901228623551]
We propose a novel long sequential recommendation model called Dynamic Memory-based Attention Network (DMAN)
It segments the overall long behavior sequence into a series of sub-sequences, then trains the model and maintains a set of memory blocks to preserve long-term interests of users.
Based on the dynamic memory, the user's short-term and long-term interests can be explicitly extracted and combined for efficient joint recommendation.
arXiv Detail & Related papers (2021-02-18T11:08:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.