Supervised Pattern Recognition Involving Skewed Feature Densities
- URL: http://arxiv.org/abs/2409.01213v1
- Date: Mon, 2 Sep 2024 12:45:18 GMT
- Title: Supervised Pattern Recognition Involving Skewed Feature Densities
- Authors: Alexandre Benatti, Luciano da F. Costa,
- Abstract summary: The classification potential of the Euclidean distance and a dissimilarity index based on the coincidence similarity index are compared.
The accuracy of classifying the intersection point between the densities of two adjacent groups is taken into account.
- Score: 49.48516314472825
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Pattern recognition constitutes a particularly important task underlying a great deal of scientific and technologica activities. At the same time, pattern recognition involves several challenges, including the choice of features to represent the data elements, as well as possible respective transformations. In the present work, the classification potential of the Euclidean distance and a dissimilarity index based on the coincidence similarity index are compared by using the k-neighbors supervised classification method respectively to features resulting from several types of transformations of one- and two-dimensional symmetric densities. Given two groups characterized by respective densities without or with overlap, different types of respective transformations are obtained and employed to quantitatively evaluate the performance of k-neighbors methodologies based on the Euclidean distance an coincidence similarity index. More specifically, the accuracy of classifying the intersection point between the densities of two adjacent groups is taken into account for the comparison. Several interesting results are described and discussed, including the enhanced potential of the dissimilarity index for classifying datasets with right skewed feature densities, as well as the identification that the sharpness of the comparison between data elements can be independent of the respective supervised classification performance.
Related papers
- Evaluating Representational Similarity Measures from the Lens of Functional Correspondence [1.7811840395202345]
Neuroscience and artificial intelligence (AI) both face the challenge of interpreting high-dimensional neural data.
Despite the widespread use of representational comparisons, a critical question remains: which metrics are most suitable for these comparisons?
arXiv Detail & Related papers (2024-11-21T23:53:58Z) - Measuring similarity between embedding spaces using induced neighborhood graphs [10.056989400384772]
We propose a metric to evaluate the similarity between paired item representations.
Our results show that accuracy in both analogy and zero-shot classification tasks correlates with the embedding similarity.
arXiv Detail & Related papers (2024-11-13T15:22:33Z) - Normalization in Proportional Feature Spaces [49.48516314472825]
normalization plays an important central role in data representation, characterization, visualization, analysis, comparison, classification, and modeling.
The selection of an appropriate normalization method needs to take into account the type and characteristics of the involved features.
arXiv Detail & Related papers (2024-09-17T17:46:27Z) - Canonical Variates in Wasserstein Metric Space [16.668946904062032]
We employ the Wasserstein metric to measure distances between distributions, which are then used by distance-based classification algorithms.
Central to our investigation is dimension reduction within the Wasserstein metric space to enhance classification accuracy.
We introduce a novel approach grounded in the principle of maximizing Fisher's ratio, defined as the quotient of between-class variation to within-class variation.
arXiv Detail & Related papers (2024-05-24T17:59:21Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
The present work describes multilayer multiset neuronal networks incorporating two or more layers of coincidence similarity neurons.
The work also explores the utilization of counter-prototype points, which are assigned to the image regions to be avoided.
arXiv Detail & Related papers (2023-08-28T12:55:13Z) - DiSC: Differential Spectral Clustering of Features [7.111650988432555]
We develop a data-driven approach for detecting groups of features that differentiate between conditions.
We compute subsets of nodes whose connectivity differs significantly between condition-specific feature graphs.
arXiv Detail & Related papers (2022-11-10T03:32:17Z) - Multivariate feature ranking of gene expression data [62.997667081978825]
We propose two new multivariate feature ranking methods based on pairwise correlation and pairwise consistency.
We statistically prove that the proposed methods outperform the state of the art feature ranking methods Clustering Variation, Chi Squared, Correlation, Information Gain, ReliefF and Significance.
arXiv Detail & Related papers (2021-11-03T17:19:53Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
This paper proposes two strategies to handle missing data for the classification of electroencephalograms.
The first approach estimates the covariance from imputed data with the $k$-nearest neighbors algorithm; the second relies on the observed data by leveraging the observed-data likelihood within an expectation-maximization algorithm.
As results show, the proposed strategies perform better than the classification based on observed data and allow to keep a high accuracy even when the missing data ratio increases.
arXiv Detail & Related papers (2021-10-19T14:24:50Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
We present a method for neural network interpretability by combining feature attribution with counterfactual explanations.
We show that this method can be used to quantitatively evaluate the performance of feature attribution methods in an objective manner.
arXiv Detail & Related papers (2021-09-28T00:53:34Z) - Classification with Nearest Disjoint Centroids [6.332832782461923]
We develop a new classification method based on nearest centroid, and it is called the nearest disjoint centroid classifier.
Our method differs from the nearest centroid classifier in the following two aspects: (1) the centroids are defined based on disjoint subsets of features instead of all the features, and (2) the distance is induced by the dimensionality-normalized norm instead of the Euclidean norm.
arXiv Detail & Related papers (2021-09-21T21:16:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.