論文の概要: Enhancing Test Time Adaptation with Few-shot Guidance
- arxiv url: http://arxiv.org/abs/2409.01341v1
- Date: Mon, 2 Sep 2024 15:50:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 06:25:12.748305
- Title: Enhancing Test Time Adaptation with Few-shot Guidance
- Title(参考訳): Few-shot Guidanceによるテスト時間適応の強化
- Authors: Siqi Luo, Yi Xin, Yuntao Du, Zhongwei Wan, Tao Tan, Guangtao Zhai, Xiaohong Liu,
- Abstract要約: 深層ニューラルネットワークは、トレーニング(ソース)とテスト(ターゲット)データのドメインシフトに直面しながら、大きなパフォーマンス低下に直面することが多い。
TTA(Test Time Adaptation)法は,事前学習したソースモデルを用いて,配信外ストリーミングターゲットデータを処理する手法として提案されている。
本稿では,Few-Shot Test Time Adaptation (FS-TTA) を開発した。
- 参考スコア(独自算出の注目度): 35.13317598777832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks often encounter significant performance drops while facing with domain shifts between training (source) and test (target) data. To address this issue, Test Time Adaptation (TTA) methods have been proposed to adapt pre-trained source model to handle out-of-distribution streaming target data. Although these methods offer some relief, they lack a reliable mechanism for domain shift correction, which can often be erratic in real-world applications. In response, we develop Few-Shot Test Time Adaptation (FS-TTA), a novel and practical setting that utilizes a few-shot support set on top of TTA. Adhering to the principle of few inputs, big gains, FS-TTA reduces blind exploration in unseen target domains. Furthermore, we propose a two-stage framework to tackle FS-TTA, including (i) fine-tuning the pre-trained source model with few-shot support set, along with using feature diversity augmentation module to avoid overfitting, (ii) implementing test time adaptation based on prototype memory bank guidance to produce high quality pseudo-label for model adaptation. Through extensive experiments on three cross-domain classification benchmarks, we demonstrate the superior performance and reliability of our FS-TTA and framework.
- Abstract(参考訳): 深層ニューラルネットワークは、トレーニング(ソース)とテスト(ターゲット)データのドメインシフトに直面しながら、大きなパフォーマンス低下に直面することが多い。
この問題に対処するために、事前訓練されたソースモデルを適用して、アウト・オブ・ディストリビューションのストリーミングターゲットデータを処理するテスト時間適応(TTA)手法が提案されている。
これらの手法はある種の緩和を提供するが、ドメインシフト補正のための信頼性の高いメカニズムは欠如しており、現実のアプリケーションでは不安定であることが多い。
そこで我々は,Few-Shot Test Time Adaptation (FS-TTA) を開発した。
少ない入力の原則に従うと、FS-TTAは目に見えないターゲットドメインでの盲点探索を減らす。
さらに,FS-TTAに取り組むための2段階のフレームワークを提案する。
(i)オーバーフィッティングを避けるために機能多様性拡張モジュールを使用するとともに、少数ショットのサポートセットで事前訓練されたソースモデルを微調整する。
二 モデル適応のための高品質な擬似ラベルを作成するため、プロトタイプメモリバンクガイダンスに基づくテスト時間適応を実装した。
3つのクロスドメイン分類ベンチマークに関する広範な実験を通じて、FS-TTAとフレームワークの性能と信頼性を実証した。
関連論文リスト
- Bi-TTA: Bidirectional Test-Time Adapter for Remote Physiological Measurement [25.11883761217408]
リモート光胸腺撮影(r)は、カメラのみを用いて生理的信号を監視する非侵襲的アプローチとして注目されている。
約束にもかかわらず、新しいドメインへのrモデルの適応性は、生理的信号の環境感受性のために妨げられている。
Bi-TTA(Bidirectional Test-Time Adapter)フレームワークについて紹介する。
論文 参考訳(メタデータ) (2024-09-25T19:55:20Z) - Low Saturation Confidence Distribution-based Test-Time Adaptation for Cross-Domain Remote Sensing Image Classification [3.79505282305064]
低飽和度分布テスト時間適応法(LSCD-TTA)を提案する。
LSCD-TTAは、異なる最適化方向に集中する3つの主要部分を含む、リモートセンシング画像の分布特性を特に考慮している。
実験の結果,LSCD-TTAはResnet-50では4.96%-10.51%,Resnet-101では5.33%-12.49%と,他の最先端DA法やTTA法と比較して有意な増加を示した。
論文 参考訳(メタデータ) (2024-08-29T05:04:25Z) - Test-Time Model Adaptation with Only Forward Passes [68.11784295706995]
テストタイム適応は、トレーニング済みのモデルを、潜在的に分布シフトのある未確認テストサンプルに適応させるのに有効であることが証明されている。
テスト時間フォワード最適化適応法(FOA)を提案する。
FOAは量子化された8ビットのViTで動作し、32ビットのViTで勾配ベースのTENTより優れ、ImageNet-Cで最大24倍のメモリ削減を実現する。
論文 参考訳(メタデータ) (2024-04-02T05:34:33Z) - Test-Time Domain Generalization for Face Anti-Spoofing [60.94384914275116]
Face Anti-Spoofing (FAS) は、顔認識システムをプレゼンテーション攻撃から保護するために重要である。
本稿では,テストデータを活用してモデルの一般化性を高める新しいテスト時間領域一般化フレームワークについて紹介する。
テスト時間スタイル投影 (TTSP) とディバーススタイルシフトシミュレーション (DSSS) によって構成された本手法は, 目に見えないデータを領域空間に効果的に投影する。
論文 参考訳(メタデータ) (2024-03-28T11:50:23Z) - AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation [1.4530711901349282]
本稿では,自律運転のためのデータセット,すなわちCLAD-CとShiFTを用いたテスト時間適応手法の検証を提案する。
現在のテスト時間適応手法は、ドメインシフトの様々な程度を効果的に扱うのに苦労している。
モデル安定性を高めるために、小さなメモリバッファを組み込むことで、確立された自己学習フレームワークを強化する。
論文 参考訳(メタデータ) (2023-09-18T19:34:23Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Improved Test-Time Adaptation for Domain Generalization [48.239665441875374]
テストタイムトレーニング(TTT)は、学習したモデルにテストデータを適用する。
この作業は2つの主な要因に対処する: テストフェーズ中にアップデートする信頼性のあるパラメータを更新および識別するための適切な補助的TTTタスクを選択する。
トレーニングされたモデルに適応パラメータを追加し、テストフェーズでのみ適応パラメータを更新することを提案する。
論文 参考訳(メタデータ) (2023-04-10T10:12:38Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
テスト時間適応(TTA)は、テスト時にラベルのないデータにモデルを適応させることによって、この問題に対処することを目的としている。
本稿では,クラス認識特徴アライメント(CAFA, Class-Aware Feature Alignment)と呼ばれる単純な機能アライメント損失を提案する。
論文 参考訳(メタデータ) (2022-06-01T03:02:07Z) - Listen, Adapt, Better WER: Source-free Single-utterance Test-time
Adaptation for Automatic Speech Recognition [65.84978547406753]
Test-time Adaptationは、ソースドメインでトレーニングされたモデルに適応して、テストサンプルの予測を改善することを目的としている。
単一発話テスト時間適応 (SUTA) は音声領域における最初のTTA研究である。
論文 参考訳(メタデータ) (2022-03-27T06:38:39Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
ほとんどの機械学習アルゴリズムの基本的な前提は、トレーニングとテストデータは、同じ基礎となる分布から引き出されることである。
本研究では,学習データをドメインに構造化し,複数のテスト時間シフトが存在する場合の領域一般化の問題点について考察する。
本稿では、適応リスク最小化(ARM)の枠組みを紹介し、モデルがトレーニング領域に適応することを学ぶことで、効果的な適応のために直接最適化される。
論文 参考訳(メタデータ) (2020-07-06T17:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。